

Welcome to POWER-Up User’s Guide documentation!

	Version

	2.0

	Date

	2018-03-26

	Document Owner

	OpenPOWER POWER-Up Team

	Authors

	Irving Baysah,
Rolf Brudeseth,
Jay Carman,
Ray Harrington,
Hoa Ngo,
Nilesh Shah

Contents:

	1. Document Preface and Scope

	2. Release Table

	3. Introduction

	4. Prerequisite Hardware Setup

	5. Installing the POWER-Up Software

	6. Creating the Config File

	7. Running the POWER-Up Cluster Deployment Software

	8. Running Operating System Install

	9. Running the POWER-Up Software Installation Software

	10. Creating Software Install Modules

	11. Running the Watson Machine Learning (WML) Accelerator Software Install Module

	12. Running the WMLA install module in an air-gapped environment

	13. Cluster Configuration File Specification

	14. Cluster Inventory File Specification

	15. Multiple Tenant Support

	16. Developer Guide

	17. Building the Introspection Kernel and Filesystem

	18. Appendix - A Using the ‘pup’ Program

	19. Appendix - B WMLA Installation for Advanced Users

	20. Appendix - D Example system 1 - Basic Flat Cluster

	21. Appendix - E Example system 2 - Basic Cluster with High Availability Network

	22. Appendix - F Detailed POWER-Up Flow (needs update)

	23. Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox SX1410

	24. Appendix - H Recovering from POWER-Up Issues (needs update)

	25. Appendix - I Using the ‘teardown’ Program

Indices and tables

	Index

	Module Index

	Search Page

1. Document Preface and Scope

This document is a User’s guide for the OpenPOWER POWER-Up
toolkit. It is targeted at all users of the toolkit. Users are expected
to have a working knowledge of Linux and Ethernet networking.

1.1. Document Control

Upon initial publication, this document will be stored on Github

1.2. Revision History

	0.9

	11 Oct 2016

	Beta release

	

	1.0

	24 Jan 2017

	initial external release

	

	1.0

	4 Feb 2017

	Fixes and updates

	

	1.1

	24 Feb 2017

	Release 1.1 with LAG and
MLAG support

	

	1.2

	14 Apr 2017

	Release 1.2 with introspection
and support for 4 ports and 2 bonds

	

	1.3

	26 Jun 2017

	Release 1.3 Passive switch mode
and improved introspection support.

	

	1.4

	22 Sep 2017

	Release 1.4 Cisco passive mode
support.

	

	2.0b

	7 Mar 2018

	Release 2.0 New config file format
and validation.
Add hardware discovery and
validation.
Add Cisco (NX-OS) switch support

	

Table 1: Revision History

1.3. Related Documentation

	Document Name

	Location / Owner

	Lenovo Application Guide For Networking OS 8.3

	http://systemx.lenovofiles.com/help/topic/com.lenovo.rackswitch.g8052.doc/G8052_AG_8-3.pdf

	Mellanox MLNX-OS® User Manual for Ethernet

	See instructions for access at https://community.mellanox.com/docs/DOC-2188

2. Release Table

	Release

	Code Name

	Release Date

	End of Life Date

	0.9

	Antares

	2016-10-24

	2017-04-15

	1.0

	Betelgeuse

	2017-01-25

	2018-03-07

	1.1

	Castor

	2017-02-24

	2018-03-07

	1.2

	Denebola

	2017-04-15

	2018-03-07

	1.3

	Electra

	2017-06-26

	TBD

	1.4

	Fafnir

	2017-06-26

	TBD

	2.0

	Grumium

	2018-03-26

	TBD

	2.1

	Helvetios

	TBD

	TBD

3. Introduction

The PowerUp suite of deployment software enables greatly simplified deployment
and configuration of OpenPOWER servers running Linux and installation of software
to groups of servers. It leverages widely used open
source tools such as Cobbler, Ansible and Python. Because it relies
solely on industry standard protocols such as IPMI and PXE boot, hybrid
clusters of OpenPOWER and x86 nodes can readily be supported.

PowerUp currently has three primary functional capabilities;

	Operating system installation (in beta)

	Software installation

	Bare metal deploy of openPOWER clusters

	Basic configuration of groups of nodes (under development)

3.1. Operating System Installation Overview

PowerUp uses a windowed text based user interface (TUI) to provide a user
friendly, easy to use facility for quickly deploying an OS to a group of similar
nodes from a user provided ISO image file. Both Red Hat and Ubuntu are supported.
After entering the subnet information for the BMC and PXE networks and selecting
the installation ISO file, the PowerUp software scans the subnet for BMCs and
displays a list of discovered nodes. Nodes are listed with serial number, model
and BMC MAC address. The user can select nodes from the list by simply scrolling
through the list, pressing the space bar to select the desired nodes and click on
‘OK’ to begin installation. A status screen shows installation status.

3.2. Software Installation Overview

PowerUp’s software installer provides a framework for ‘pluggable’ software
install modules which can be user created. Python classes are provided to
facilitate the creation of yum, conda and pypi simple repositories. The nginx
web server is used to serve software binaries and packages to the nodes being
installed.

3.3. Node Configuration

Basic configuration of groups of similar nodes is under development. A simple
to use TUI will allow setting of hostnames, setup of network interfaces, basic firewall
configuration and basic setup of network attached shared storage. Ansible is used
to handle configuration tasks across a cluster.

3.4. Cluster Deploymment Overview

PowerUp’s bare metal cluster deployment deploys a heterogeneous cluster of
compute nodes and Ethernet switches across one or more racks. PowerUp can
configure simple flat networks for typical HPC
environments or more advanced networks with VLANS and bridges for
OpenStack environments. Complex heterogeneous clusters can be easily deployed
using PowerUp’s interface and node templates. PowerUp configures
the switches in the cluster with support for multiple switch vendors.

Cluster PowerUp is designed to be easy to use. If you are implementing
one of the supported architectures with supported hardware, it eliminates
the need for custom scripts or programming. It does this via a text
configuration file (config.yml) which drives the cluster configuration.
The configuration file is a YAML text file which the user edits. Several
example config files are included docs directory. The configuration
process is driven from a “deployer” node which can be removed from the
cluster when finished. The PowerUp process is as follows;

	Rack and cable the hardware.

	Initialize hardware.

	initialize switches with static IP address, userid and password.

	insure that all cluster compute nodes are set to obtain a DHCP
address on their BMC ports and they are configured to support
PXE boot on one of their network adapters.

	Install the Cluster PowerUp software on the deployer node.

	Edit an existing config.yml file to drive the configuration.

	Run the PowerUp software

When finished, Cluster PowerUp generates a YAML formatted inventory file
with detailed information about your cluster nodes. This file can
be read by operational management software and used to seed
configuration files needed for installing a solution software stack.

3.4.1. Hardware and Architecture Overview

The PowerUp software supports clusters of servers
interconnected with Ethernet. The
servers must support IPMI and PXE boot. Multiple racks can
be configured with traditional two tier access-aggregation
networking. PowerUp configures both a management and
data network. In simple / cost sensitive setups, the management
and data networks can be configured on the same physical switch.
Power-Up can configure VLANs and bonded networks with as many ports
as the hardware supports. Redundant data switches (ie MLAG) are also
supported. (Currently only implemented on Mellanox switches.)

3.4.2. Networking

Cluster PowerUp provides basic layer 2 configuration of Cisco, Mellanox
and Lenovo switches. Not all functionality is enabled on all switch types.
Currently redundant networking (MLAG) is only implemented on Mellanox
switches. Port channel support is only implemented on Cisco (NX-OS) and
Mellanox switches. PowerUp can configure any number of node interfaces
on cluster nodes. To facilitate installation of higher level software,
network interfaces can be optionally renamed.

Interface templates are used to define network configurations
in the config.yml file. These can be physical ports, bonded ports,
Linux bridges or VLANS. Interface templates can be entered using
Ubuntu or Red Hat network configuration syntax. Once defined, interface
templates can be applied to any node template. Node interfaces can
optionally be configured with static IP addresses. These can be assigned
sequentially or from a list.

3.4.3. Compute Nodes

Cluster PowerUp supports clusters of heterogeneous compute nodes. Users
can define any number of node types by creating templates in a config file.
Node templates can include any network templates defined in the network
templates section. The combination of node templates and network templates
allows great flexibility in building heterogeneous clusters with nodes
dedicated to specific purposes.

3.4.4. Supported Hardware

Compute Nodes

OpenPOWER Compute Nodes;

	S812LC

	S821LC

	S822LC (Minsky)

	SuperMicro OpenPOWER servers

x86 Compute Nodes;

	Lenovo x3550

	Lenovo x3650

Many other x86 nodes should work, but we have only tested with Lenovo and some Supermicro nodes.

Switches

For information on adding additional switch support using
PowerUp’s switch class API, (see Developer Guide)

Supported Switches;

	Mellanox SX1410

	Mellanox SX1710

	Cisco 5K (FEXes supported)

	Lenovo G8052, G7028, G7052 (bonding not currently supported)

Note
Other Mellanox switches may work but have not been tested
Lenovo G8264 has not been tested
Other Cisco NX-OS based switches may work but have not been tested

4. Prerequisite Hardware Setup

4.1. Setting up the Deployer Node

It is recommended that the deployer node have at least one available core of a
XEON class processor, 16 GB of memory free and 64 GB available disk space. When
using the POWER-Up software installation capabilities, it is recommended that 100 GB
of disk space be available and that there be at least 40 GB of free disk space in the
partition holding the /srv directory. For larger clusters, additional cores,
memory and disk space are recommended. A 4 core XEON class processor with 32 GB
memory and 320 GB disk space is generally adequate for clusters up
to several racks.

The deployer node requires internet access for setup and installation of the POWER-UP
software and may need internet access for creation of any repositories needed for
software installation.
This can be achieved through the interface used for connection to the management
switch (assuming the management switch has a connection to the internet) or through
another interface. Internet access requirements for software installation depends on
the software installation module. Internet access is required when running cluster
deployments.

4.1.1. Operating Sytem and Package setup of the Deployer Node

	
	Deployer OS Requirements:

	
	
	Ubuntu (Software installation is not yet supported under Ubuntu)

	
	Release 14.04LTS or 16.04LTS

	sudo privileges

	
	RHEL (Software installation is supported with POWER-Up vs 2.1. Cluster deployment is not yet supported under RHEL)

	
	Release 7.2 or later

	Extra Packages for Enterprise Linux (EPEL) repository enabled
(https://fedoraproject.org/wiki/EPEL)

	sudo privileges

	
	Enable Red Hat ‘optional’ and ‘extra’ repository channels or enable the repository on the RHEL installation iso if available. (https://access.redhat.com/solutions/1355683) (required only if using the POWER-Up software installer)

	
	
	Power8:

	
	$ sudo subscription-manager repos –enable=rhel-7-for-power-le-optional-rpms

	$ sudo subscription-manager repos –enable=rhel-7-for-power-le-extras-rpms

	
	Power9:

	
	$ sudo subscription-manager repos –enable=rhel-7-for-power-9-optional-rpms

	$ sudo subscription-manager repos –enable=rhel-7-for-power-9-extras-rpms

	
	Optional:

	
	Assign a static, public ip address to the BMC port to allow
external control of the deployer node.

	Enable ssh login

4.1.2. Network Configuration of the Deployer Node

For Software Installation

Use of the POWER-Up software installer requires that an interface on the installer node
be pre-configured with access to the cluster nodes. If the cluster was not deployed by
POWER-Up, this needs to be done manually. If the cluster has been deployed by POWER-Up,
the PXE network will be automatically configured and can be used for software installation.

Although a routed connection to the cluster can be used for software installs,
It is preferable that the interface used have an IP address in the subnet of the
cluster network to be used for installation.

For Bare Metal Deployments

For bare metal deployments the deployer port connected to the management
switch must be defined in /etc/network/interfaces (Ubuntu) or the ifcfg-eth# file
(RedHat). e.g.:

auto eth0 # example device name
iface eth0 inet manual

POWER-Up can set up a subnet and optionally a vlan for it’s access to the switches in the
cluster. It is recommended that the deployer be provided with a direct
connection to the management switch to simplify the overall setup. If this is
not possible, the end user must insure that tagged vlan packets can be
communicated between the deployer and the switches in the cluster. The interface
used for PXE and IPMI can have additional IP addresses on it, but they should not
be in the PXE or IPMI subnet. Similarly, this interface can have existing tagged
vlans configured on it, but they should not be the vlans to be used by the PXE and
IPMI networks.

An example of the config file parameters used to configure initial access to the
switches is given above with POWER-Up setup of the switch management network. For a detailed
description of these keys see
deployer ‘mgmt’ networks,
‘switches: mgmt:’ and
‘switches: data:’ in the Cluster Configuration File Specification.

4.2. Hardware initialization

	Insure the cluster is cabled according to build instructions and that a list
of all switch port to node physical interface connections is available and
verified. Note that every node must have a physical connection from both BMC
and PXE ports to a management switch. (see the example cluster in
Appendix-D)

	Cable the deployer node directly to a management switch. For large cluster
deployments, a 10 Gb connection is recommended. The deployer node must have
access to the public internet (or site) network for retrieving software and
operating system image files. If the cluster management network does not have
external access an alternate connection must be provided, such as the cluster
data network.

	Insure that the BMC ports of all cluster nodes are configured to obtain an IP
address via DHCP.

	If this is a first time OS install, insure that all PXE ports are configured
to obtain an IP address via DHCP. On OpenPOWER servers this is typically
done using the Petitboot menus, e.g.:

Petitboot System Configuration
──
 Boot Order (0) Any Network device
 (1) Any Device:

 [Add Device:]
 [Clear & Boot Any]
 [Clear]

 Timeout: 10 seconds

 Network: (*) DHCP on all active interfaces
 () DHCP on a specific interface
 () Static IP configuration

	Acquire any needed public and or site network addresses.

	Insure you have a config.yml file to drive the cluster configuration. If
necessary, edit / create the config.yml file (see section
Creating the Config File)

Configuring the Cluster Switches

POWER-Up can configure supported switch models (See Supported Hardware).
If automated switch configuration is not desired ‘passive’ switch mode can be
used with any switch model (See
Preparing for Passive Mode)

Initial configuration of cluster switch(es)

In order to configure your cluster switches, Cluster POWER-Up needs management
access to all your cluster switches. This management network can be vlan isolated
but for most applications a non-isolated management network is suitable and
simpler to setup. To prepare for a non-isolated management network, you need to
create management interfaces on all your cluster switches. The IP addresses for
these management interfaces all need to be in the same subnet. The deployer will
also need an IP address in this subnet. You will also need to know a userid and
password for each switch and each switch will need to be enabled for SSH access.
One of the management switches in your cluster must have a data port accessible
to the deployer. This can be a routed connection supporting tagged vlans, but it
is recommended that there be a direct connection between the deployer and one
management switch.

For out of box installation, it is usually easiest to configure switches
using a serial connection. Alternately, if the switch has a connection to a
network without a DHCP server running, you may be able to access the switch at a
default IP address. If the switch has a connection to a network with a DHCP server
running, you may be able to reach it at the assigned IP address. See the switches
installation guide. For additional info on Lenovo G8052 specific commands,
see Appendix-G and the Lenovo RackSwitch G8052 Installation
guide).

[image: _images/simple-cluster.png]
POWER-Up setup of the switch management network

In this simple cluster example, the management switch has an in-band management
interface. The
initial setup requires a management interface on all switches configured to
be accessible by the deployer node. The configured ip address must be provided
in the ‘interfaces:’ list within each ‘switches: mgmt:’
and ‘switches: data:’ item. Cluster POWER-Up uses this
address along with the provided userid and password credentials to access the
management switch. Any additional switch ‘interfaces’ will be configured
automatically along with
deployer ‘mgmt’ networks.

The following snippets are example config.yml entries for the diagram above:

	Switch config file definition:

switches:
 mgmt:
 - label: mgmt_switch
 userid: admin
 password: abc123
 class: lenovo
 interfaces:
 - type: inband
 ipaddr: 192.168.32.20
 links:
 - target: deployer
 ports: 46

	Deployer ‘mgmt’ networks:

deployer:
 networks:
 mgmt:
 - device: enp1s0f0
 interface_ipaddr: 192.168.32.95
 netmask: 255.255.255.0

Note that the deployer mgmt interface_ipaddress is in the same subnet
as the management switches ipaddr. (192.168.32.0 netmask: 255.255.255.0)

As an example, management switch setup commands for the Lenovo G8052 are given
below. For other supported switches consult the switch documentation.

	Enable configuration of the management switch:

enable
configure terminal

	Enable IP interface mode for the management interface:

RS G8052(config)# interface ip 1

	assign a static ip address, netmask and gateway address to the management
interface. This must match one of the switch ‘interfaces’ items specified in
the config.yml ‘switches: mgmt:’ list:

RS G8052(config-ip-if)# ip address 192.168.32.20 # example IP address
RS G8052(config-ip-if)# ip netmask 255.255.255.0
RS G8052(config-ip-if)# vlan 1 # default vlan 1 if not specified
RS G8052(config-ip-if)# enable
RS G8052(config-ip-if)# exit

	admin password. This must match the password specified in the config.yml
corresponding ‘switches: mgmt:’ list item. The
following command is interactive:

access user administrator-password

	disable spanning tree:

spanning-tree mode disable

	enable secure https and SSH login:

ssh enable
ssh generate-host-key
access https enable

	Save the config. For additional information, consult vendor documentation):

copy running-config startup-config

Adding additional management and data switch(es)

For out of box installation, it is usually necessary to configure the switch
using a serial connection. See the switch installation guide. As an example, for
Mellanox switches, a configuration wizard can be used for initial configuration:

	assign hostname

	set DHCP to no for management interfaces

	set zeroconf on mgmt0 interface: to no

	do not enable ipv6 on management interfaces

	assign static ip address. This must match the corresponding interface ‘ipaddr’
specified in the config.yml file ‘switches: data:’
list, and be in a deployer ‘mgmt’ network.

	assign netmask. This must match the netmask of the
deployer ‘mgmt’ network that will be used to
access the management port of the switch.

	default gateway

	Primary DNS server

	Domain name

	Set Enable ipv6 to no

	admin password. This must match the password specified in the config.yml
corresponding ‘switches: data:’ list item.

	disable spanning tree. Typical industry standard commands:

enable
configure terminal
no spanning-tree

	enable SSH login:

ssh server enable

	Save config. In switch config mode:

configuration write

	If using redundant data switches with MLAG or vPC, connect only a single
inter switch peer link (IPL) between switches or leave the IPL links disconnected
until Cluster POWER-Up completes. (This avoids loops)

	Add the additional switches to the config.yml. A data switch is added as shown
below:

	Switch config file definition:

switches:
 .
 .
 data:
 - label: data_switch
 userid: admin
 password: abc123
 class: cisco
 interfaces:
 - type: inband
 ipaddr: 192.168.32.25
 links:
 - target: mgmt_switch
 ports: mgmt

This completes normal POWER-Up initial configuration. For additional information
and examples on preparing cluster hardware, see the sample configurations in the
appendices.

Preparing for Passive Mode

In passive mode, POWER-Up configures the cluster compute nodes without requiring
any management communication with the cluster switches. This facilitates the use
of POWER-Up even when the switch hardware is not supported or in cases where the
end user does not allow 3rd party access to their switches. When running
POWER-Up in passive mode, the user is responsible for configuring the cluster
switches. The user must also provide the Cluster POWER-Up software with MAC
address tables collected from the cluster switches during the POWER-Up process.
For passive mode, the cluster management switch must be fully programmed before
beginning cluster POWER-Up, while the data switch should be configured after
POWER-Up runs.

Configuring the management switch(es)

	The port(s) connected to the deployer node must be put in trunk mode with
allowed vlans associated with each respective device as defined in the
deployer ‘mgmt’ and
‘client’ networks.

	The ports on the management switch which connect to cluster node BMC
ports or PXE interfaces must be in access mode and have their PVID
(Native VLAN) set to the respective ‘type: ipmi’ and ‘type: pxe’ ‘vlan’ values
set in the ‘deployer client networks’.

Configuring the data switch(es)

Configuration of the data switches is dependent on the user requirements. The
user / installer is responsible for all configuration. Generally, configuration
of the data switches should occur after Cluster POWER-Up completes. In
particular, note that it is not usually possible to acquire complete MAC address
information once vPC (AKA MLAG or VLAG) has been configured on the data
switches.

5. Installing the POWER-Up Software

	Verify that all the steps in Setting up the Deployer Node have been executed.

	Login to the deployer node.

	Install git

	Ubuntu:

$ sudo apt-get install git

	RHEL:

$ sudo yum install git

	From your home directory, clone POWER-Up:

$ git clone https://github.com/ibm/power-up

	Install the remaining software packages used by Power-Up and
setup the environment:

$ cd power-up
$./scripts/install.sh

(this will take a few minutes to complete)

$ source scripts/setup-env

NOTE: The setup-env script will ask for permission to add
lines to your .bashrc file which modify the PATH environment variable.
It is recommended that you allow this so that the POWER-Up environment
is restored if you need to re-open the window or open and additional window.

6. Creating the Config File

The config file drives the creation of the cluster. It is in YAML format which
is stored as readable text. The lines must be terminated with a newline
character (\n). When creating or editing the file on the Microsoft Windows
platform be sure to use an editor, such as LibreOffice, which supports saving
text files with the newline terminating character or use dos2unix to convert
the windows text file to unix format.

Sample config files can be found in the power-up/sample-configs
directory. Once a config file has been created, rename it to config.yml and
move it to the project root directory. YAML files support data structures such
as lists, dictionaries and scalars. The Cluster Configuration File
Specification describes the various fields.

See Cluster Configuration File Specification.

YAML files use spaces as part of its syntax. For example, elements of the same
list must have the exact same number of spaces preceding them. When editing the
config file pay careful attention to spaces at the start of lines. Incorrect
spacing can result in failure to parse the file.

Schema and logic validation of the config file can be performed with the
pup.py command:

$ cd power-up
$ source pup-venv/bin/activate
$./scripts/python/pup.py validate --config-file

6.1. Switch Mode

6.1.1. Active Switch Mode

This mode allows the switches to be automatically configured during deployment.

6.1.2. Passive Switch Mode

This mode requires the user to manually configure the switches and to write
switch MAC address tables to file.

Passive management switch mode and passive data switch mode can be configured
independently, but passive and active switches of the same classification
cannot be mixed (i.e. all data switches must either be active or passive).

See Config Specification - Globals Section.

Passive Management Switch Mode:

Passive management switch mode requires the user to configure the management
switch before initiating a deploy. The client network must be isolated from
any outside servers. IPMI commands will be issued to any system BMC that is set
to DHCP and has access to the client network.

Passive Data Switch Mode:

Passive data switch mode requires the user to configure the data switch in
accordance with the defined networks. The node interfaces of the cluster will
still be configured.

6.2. Networks

The network template section defines the networks or groups of networks and
will be referenced by the Node Template members.

See Config Specification - Networks Section.

6.3. Node Templates

The order of the individual ports under the ports list is important since the
index represents a node and is referenced in the list elements under the pxe
and data keys.

See Config Specification - Node Templates Section.

6.3.1. Renaming Interfaces

The rename key provides the ability to rename ethernet interfaces. This
allows the use of heterogeneous nodes with software stacks that need consistent
interface names across all nodes. It is not necessary to know the existing
interface name. The cluster configuration code will find the MAC address of the
interface cabled to the specified switch port and change it accordingly.

6.3.2. Install Device

The install_device key is the disk to which the operating system will be
installed. Specifying this disk is not always obvious because Linux naming is
inconsistent between boot and final OS install. For OpenPOWER S812LC, the two
drives in the rear of the unit are typically used for OS install. These drives
should normally be specified as /dev/sdj and /dev/sdk.

6.4. Post POWER-Up Activities

Once deployment has completed it is possible to launch additional commands or
scripts specified in the Software Bootstrap section. These can perform
configuration actions or bootstrap install of additional software packages.
Commands can be specified to run on all cluster nodes or only specific nodes
determined by the compute template name.

See Config Specification - Software Bootstrap Section.

7. Running the POWER-Up Cluster Deployment Software

7.1. Installing and Running the POWER-Up code. Step by Step Instructions

	Verify that all the steps in section 4 Prerequisite Hardware Setup have been executed. POWER-Up can not run if addresses have
not been configured on the cluster switches and recorded in the config.yml
file.

	Login to the deployer node.

	Install git

	Ubuntu:

$ sudo apt-get install git

	RHEL:

$ sudo yum install git

	From your home directory, clone POWER-Up:

$ git clone https://github.com/ibm/power-up

	Install the remaining software packages used by Power-Up and
setup the environment:

$ cd power-up
$./scripts/install.sh

(this will take a few minutes to complete)

$ source scripts/setup-env

NOTE: The setup-env script will ask for permission to add
lines to your .bashrc file. It is recommended that you allow this
so that the POWER-Up environment is restored if you open a new window.
These lines can be removed using the “teardown” script.

	If introspection is enabled then follow the instructions in
Building Necessary Config Files
to set the ‘IS_BUILDROOT_CONFIG’ and ‘IS_KERNEL_CONFIG’ environment
variables. (Introspection NOT YET ENABLED for POWER-Up 2.0)

	Copy your config.yml file to the ~/power-up directory (see
section 4 Creating the config.yml
File for how to create the config.yml file)

	Copy any needed os image files (iso format) to the
‘~/power-up/os-images’ directory. Symbolic links to image
files are also allowed.

NOTE:
Before beginning the next step, be sure all BMCs are configured to obtain a
DHCP address then reset (reboot) all BMC interfaces of your cluster nodes.
As the BMCs reset, the POWER-Up DHCP server will assign new addresses to them.

One of the following options can be used to reset the BMC interfaces;

	Cycle power to the cluster nodes. BMC ports should boot and wait to obtain
an IP address from the deployer node.

	Use ipmitool run as root local to each node; ipmitool bmc reset warm OR
ipmitool mc reset warm depending on server

	Use ipmitool remotely such as from the deployer node. (this assumes a known
ip address already exists on the BMC interface):

ipmitool -I lanplus -U <username> -P <password> -H <bmc ip address> mc reset cold

If necessary, use one of the following options to configure the BMC
port to use DHCP;

	From a local console, reboot the system from the host OS, use the
UEFI/BIOS setup menu to configure the BMC network configuration to
DHCP, save and exit.

	use IPMItool to configure BMC network for DHCP and reboot the BMC

	Copy your config.yml file to the ~/power-up directory.

	To validate your config file:

$ pup validate --config-file

	Note: Most of POWER-Up’s capabilities are accessed using the ‘pup’ program.

	For a complete overview of the pup program, see Appendix-A.

	To deploy operating systems to your cluster nodes:

$ pup deploy

Note: If running with passive management switch(es) follow special
instructions in Passive Switch Mode Special Instructions instead. (NOTE:
passive management switches are not yet supported in POWER-Up 2.0)

	This will create the management networks, install the container that runs most of the POWER-Up
functions and then optionally launch the introspection OS and then install OS’s on the cluster nodes.
This process can take as little as 40 minutes or as much as multiple hours depending on
the size of the cluster, the capabilities of the deployer and the complexity of the deployment.

	To monitor progress of the deployment, open an additional terminal session
into the deployment node and run the pup program with a status request. (Running
POWER-Up utility functions in another terminal window will not work if you did not
allow POWER-Up to make updates to your .bashrc file):

$ pup util --status (NOT yet implemented in POWER-Up 2.0)

After a few minutes POWER-Up will have initialized and will start discovering
and validating your cluster hardware. During discovery and validation, POWER-Up
will first verify that it can communicate with all of the switches defined in
the config file. Next it will create a DHCP server attached to the IPMI network
and wait for all of the cluster nodes defined in the config file to request a
DHCP address. After several minutes, a list of responding nodes will be
displayed. (display order will match the config file order). If there are missing
nodes, POWER-Up will pause so that you can take corrective actions.
You will then be given the option to continue discovering the nodes or to
continue on. POWER-Up will also verify that all nodes respond to IPMI commands.
Next, POWER-Up will verify that all cluster nodes are configured to request PXE boot.
POWER-Up will set the boot device to PXE on all discovered
nodes, cycle power and then wait for them to request PXE boot.
Note that POWER-Up will not initiate
PXE boot at this time, it is only verifying that all the nodes are configured
to request PXE boot. After several minutes all nodes requesting PXE boot
will be listed (again in the same order that they are entered in the config file)
POWER-Up will again pause to give you an opportunity to make any necessary
corrections or fixes. You can
also choose to have POWER-Up re-cycle power to nodes that have not yet
requested PXE boot. For nodes that are missing, verify cabling and verify the
config.yml file. See “Recovering from POWER-Up Issues” in the
appendices for additional debug help. You can check which nodes have obtained IP
addresses, on their BMC’s and or PXE ports by executing the following from another
window:

$ pup util --scan-ipmi (not yet implemented in POWER-Up 2.0)
$ pup util --scan-pxe (not yet implemented in POWER-Up 2.0)

NOTES:
The DHCP addresses issued by POWER-Up during discovery and validation have a
short 5 minute lease and POWER-Up dismantles the DHCP servers after validation.
You will lose the ability to scan these networks within a few minutes after
validation ends. After deploy completes, you will again be able to scan these
networks.

Note that cluster validation can be re-run as often as needed. Note that if
cluster validation is run after deploy, the cluster nodes will be power cycled
which will of course interrupt any running work.

After discovery and validation complete, POWER-Up will create a container
for the POWER-Up deployment software to run in. Next it installs the deployment
software and operating system images in the container and then begins the
process of installing operating systems to the cluster nodes.
Operating system install happens in parallel and overall install time is
relatively independent of the number of nodes up to tens of nodes.

	Introspection (NOT yet enabled in POWER-Up 2.0)

If introspection is enabled then all client systems will be booted into the
in-memory OS with ssh enabled. One of the last tasks of this phase of POWER-Up
will print a table of all introspection hosts, including their
IP addresses and login / ssh private key credentials. This list is maintained
in the ‘power-up/playbooks/hosts’ file under the ‘introspections’ group.
POWER-Up will pause after the introspection OS deployment to allow for customized
updates to the cluster nodes. Use ssh (future: or Ansible) to run custom scripts
on the client nodes.

	To continue the POWER-Up process after introspection, press enter.

Again, you can monitor the progress of operating system installation from an
additional terminal window:

$ pup util --status

It will usually take several minutes for all the nodes to load their OS.
If any nodes do not appear in the cobbler status, see “Recovering from
POWER-Up Issues” in the Appendices

POWER-Up creates logs of it’s activities. A file (gen) external to the
POWER-Up container is written in the power-up/log directory.

An additional log file is created within the deployer container.
This log file can be viewed:

$ pup util --log-container (NOT yet implemented in POWER-Up 2.0)

Configuring networks on the cluster nodes

Note: If running with passive data switch(es) follow special instructions in
post-deploy-passive instead.

After completion of OS installation, POWER-Up will pause and wait for user input
before continuing. You can press enter to continue on with cluster node
and data switch configuration or stop the POWER-Up process. After stopping, you
can readily continue the node and switch configuration by entering:

$ pup post-deploy

During post-deploy, POWER-Up performs several additional activities such
as setting up networking on the cluster nodes, setting up SSH keys and
copying them to cluster nodes, and configures the data switches.

If data switches are configured with MLAG verify that;

	Only one IPL link is connected. (Connecting multiple IPL links before
configuration can cause loop problems)

	No ports used by you cluster nodes are configured in port channels.
(If ports are configured in port channels, MAC addresses can not be
acquired, which will prevent network configuration)

7.2. Passive Switch Mode Special Instructions

Deploying operating systems to your cluster nodes with passive management
switches

When prompted, it is advisable to clear the mac address table on the management
switch(es).

When prompted, write each switch MAC address table to file in the
‘power-up/passive’ directory. The files should be named to match the unique
switch label values set in the ‘config.yml’ ‘switches:’ dictionary. For example,
for the following management switch definitions:

switches:
 mgmt:
 - label: passive_mgmt_1
 userid: admin
 password: abc123
 interfaces:
 :
 :
 :
 mgmt:
 - label: passive_mgmt_2
 userid: admin
 password: abc123
 interfaces:

	The user would need to write two files:

	
	‘power-up/passive/passive_mgmt_1’

	‘power-up/passive/passive_mgmt_2’

If the user has ssh access to the switch management interface, writing the MAC
address table to file can be readily accomplished by redirecting stdout. Here is
an example of the syntax for a Lenovo G8052:

$ ssh <mgmt_switch_user>@<mgmt_switch_ip> \
'show mac-address-table' > ~/power-up/passive/passive_mgmt_1

Note that this command would need to be run for each individual mgmt switch,
writing to a separate file for each. It is recommended to verify each file has
a complete table for the appropriate interface configuration and only one mac
address entry per interface.

See MAC address table file formatting rules below.

After writing MAC address tables to file press enter to continue with OS
installation. Resume normal instructions.

If deploy-passive fails due to incomplete MAC address table(s) use the
following command to reset all servers (power off / set bootdev pxe / power on)
and attempt to collect MAC address table(s) again when prompted:

$ pup util --cycle-power-pxe (NOT yet implemented)

Configuring networks on the cluster nodes with passive data switches

When prompted, it is advisable to clear the mac address table on the data
switch(es). This step can be skipped if the operating systems have just been
installed on the cluster nodes and the mac address timeout on the switches is
short enough to insure that no mac addresses remain for the data switch ports
connected to cluster nodes. If in doubt, check the acquired mac address file
(see below) to insure that each data port for your cluster has only a single
mac address entry.:

$ pup post-deploy

When prompted, write each switch MAC address table to file in
‘power-up/passive’. The files should be named to match the unique label
values set in the ‘config.yml’ ‘switches:’ dictionary. For example,
take the following data switch definitions:

switches:
 :
 :
 data:
 - label: passive1
 class: cisco
 userid: admin
 password: passw0rd
 :
 :
 - label: passive2
 class: cisco
 userid: admin
 password: passw0rd
 :
 :
 - label: passive3
 class: cisco
 userid: admin
 password: passw0rd

	The user would need to write three files:

	
	‘~/power-up/passive/passive1’

	‘~/power-up/passive/passive2’

	‘~/power-up/passive/passive3’

If the user has ssh access to the switch management interface writing the MAC
address table to file can easily be accomplished by redirecting stdout. Here is
an example of the syntax for a Mellanox SX1400 / SX1710:

$ ssh <data_switch_user>@<data_switch_ip> \
'cli en "conf t" "show mac-address-table"' > ~/power-up/passive/passive1

For a Cisco NX-OS based switch:

$ ssh <data_switch_user>@<data_switch_ip> \
'conf t ; show mac address-table' > ~/power-up/passive/passive1

Note that this command would need to be run for each individual data switch,
writing to a separate file for each. It is recommended to verify each file has
a complete table for the appropriate interface configuration and only one mac
address entry per interface.

See MAC address table file formatting rules below.

MAC Address Table Formatting Rules

Each file must be formatted according to the following rules:

	
	MAC addresses and ports are listed in a tabular format.

	
	Columns can be in any order

	Additional columns (e.g. vlan) are OK as long as a header is
provided.

	If a header is provided and it includes the strings “mac address” and
“port” (case insensitive) it will be used to identify column positions.
Column headers must be delimited by at least two spaces. Single spaces
will be considered a continuation of a single column header (e.g. “mac
address” is one column, but “mac address vlan” would be two).

	If a header is provided, it must include a separator row consisting of
dashes ‘-‘ to delineate columns. One or more spaces or plus symbols ‘+’
are to be used to separate columns.

	If a header is not provided then only MAC address and Port columns are
allowed.

	
	MAC addresses are written as (case-insensitive):

	
	Six pairs of hex digits delimited by colons (:) [e.g. 01:23:45:67:89:ab]

	Six pairs of hex digits delimited by hyphens (-) [e.g. 01-23-45-67-89-ab]

	Three quads of hex digits delimited by periods (.) [e.g. 0123.4567.89ab]

	
	Ports are written either as:

	
	An integer

	A string starting with ‘Eth1/’ followed by one or more numeric digits
without white space. (e.g. “Eth1/25” will be saved as “25”)

	A string starting with ‘Eth’ and containing multiple numbers separated
by “/”. The ‘Eth’ portion of the string will be removed)
removed. (e.g. “Eth100/1/5” will be saved as “100/1/5”).

Cisco, Lenovo and Mellanox switches currently supported by POWER-Up follow
these rules. An example of a user generated “generic” file would be:

mac address Port
----------------- ----
0c:c4:7a:20:0d:22 38
0c:c4:7a:76:b0:9b 19
0c:c4:7a:76:b1:16 9
0c:c4:7a:76:c8:ec 37
40:f2:e9:23:82:ba 18
40:f2:e9:23:82:be 17
40:f2:e9:24:96:5a 22
40:f2:e9:24:96:5e 21
5c:f3:fc:31:05:f0 13
5c:f3:fc:31:06:2a 12
5c:f3:fc:31:06:2c 11
5c:f3:fc:31:06:ea 16
5c:f3:fc:31:06:ec 15
6c:ae:8b:69:22:24 2
70:e2:84:14:02:92 5
70:e2:84:14:0f:57 1

7.3. SSH Keys

The OpenPOWER POWER-Up Software will generate a passphrase-less SSH
key pair which is distributed to
each node in the cluster in the /root/.ssh directory. The public key is
written to the authorized_keys file in the /root/.ssh directory and
also to the /home/userid-default/.ssh directory. This key pair can be
used for gaining passwordless root login to the cluster nodes or
passwordless access to the userid-default. On the deployer node, the
key pair is written to the ~/.ssh directory as gen
and gen.pub. To login to one of the cluster nodes
as root from the deployer node:

ssh -i ~/.ssh/gen root@a.b.c.d

As root, you can log into any node in the cluster from any other node in
the cluster as:

ssh root@a.b.c.d

Where a.b.c.d is the IP address of the port used for pxe install. These
addresses are stored under the key name ipv4-pxe in the inventory file.
The inventory file is stored on every node in the cluster at
/var/oprc/inventory.yml. The inventory file is also stored on the
deployer in the deployer container in the /opt/power-up
directory. A symbolic link to this inventory file is created in
the ~/power-up directory as ‘inventorynn.yml’, where nn is the number of
the pxe vlan.

Note that you can also log into any node in the cluster using the
credentials specified in the config.yml file (key names userid-default
and password-default)

8. Running Operating System Install

The PowerUp Operating system installer is a simple to use windowed (TUI) interface that provides rapid deployment of operating systems to similar nodes. Power8 and Power9 OpenPOWER nodes including those with OpenBMC are supported. Because the installer uses industry standard PXE protocols, it is expected to work with most x86 nodes which support PXE boot.

The OS installer is invoked from the command line;

pup osinstall {profile.yml}

The process takes just three easy steps

	Enter network subnet info and select the interface to use.

	Enter BMC access info, choose an ISO image, Scan the BMC network subnet and select the nodes to install.

	Install. A status screen shows the progress of nodes being installed.

8.1. Network Interface Setup

[image: _images/Network-setup.png]
Network interface setup

The network interface setup window

At a minimum, you need to select a network interface on the PowerUp install node to be used for communicating with the nodes to be installed. You can accept the default private subnets or enter in your own subnet addresses and subnet masks.

Note that you can obtain help on any entry field by pressing F1 while in that field. Some fields such as the interface selection fields are intelligent and may change or autofill based on other fields. For instance the interface selection fields will autofill the interface if the there is an interface on the install node with a route matching the entered subnet and mask. If it does not autofill, press enter and select an interface from the available ‘up’ physical interfaces. You can use the same interface for accessing the BMCs and PXE ports or different interfaces. If needed, PowerUp will add addresses and create tag’ed interfaces on the install node. Network changes are temporary and will not survive reboots or network restarts.

8.2. Node Selection

[image: _images/Node-selection.png]
Node Selection

The Node Selection window

At a minimum, you need to enter access credentials for the target nodes BMCs and select an ISO image file. All nodes being deployed must have the same userid and password. Press enter in the ISO image file field to open a file browser/selection window. Move to the ‘scan for nodes’ button and press enter to scan the BMC subnet for nodes. After several seconds the nodes scan should complete. Scroll through the list of nodes and press enter to select nodes to install. When done, press ‘OK’ to begin OS installation.

8.3. Installation Status

[image: _images/Node-status0.png]
Node installation status

The Node Installation Status window

After a minute or so, the selected nodes will be set to PXE boot and a reboot will begin. An installation status window will open. The nodes will be listed but status will not begin updating until they have rebooted and started the installation process which typically takes a couple of additional minutes. Once the nodes start to install, the status will show started and an elapsed time will appear. Once installation completes, the status will change to ‘Finished’ and a final time stamp will be posted. At this points the nodes are rebooted a second time. After the second reboot, the nodes should be accessible at the host ip address in the status window and the user credentials in the kickstart or preseed file.

[image: _images/Node-status-start.png]
Node installation started status

9. Running the POWER-Up Software Installation Software

Under development. This functionality is not yet supported in the master
branch of POWER-Up. Development of this function is in the dev-software-install
branch.

	Verify that all the steps in Installing the POWER-Up Software have been executed.

	Copy or download the software install module to be used to the power-up/software directory. POWER-Up currently ships with the installer module for PowerAI Enterprise vs 5.2. (paie52). See Running the Watson Machine Learning (WML) Accelerator Software Install Module

	Consult the README for the specific software install module for the names of any tar files, binaries or other files needed for the specific software installation. Copy these to the installer node before running the software install module. Installation files can be copied anywhere on the installer node but will be located more quickly if located in directories under a /home directory.

Run the prep phase:

$ pup software --prep <install module name>

After successful completion, run the init or install phase. (Install will run the init phase prior to installation phase):

$ pup software --init-clients <install module name>

$ pup software --install <install module name>

POWER-Up provides a simple framework for running user provided software install modules.
See Creating Software Install Modules for guidance on how to create these modules.

10. Creating Software Install Modules

POWER-Up provides a simple framework for running user provided software install modules. Software install modules are Python modules which reside in the power-up/software directory. The module may be given any valid Python module name. A POWER-Up software install module can contain any user provided code, but it must implement a class named ‘software’ and the software class must implement the following methods;

	README

	prep

	init_client

	install

	status

The prep method is generally intended to provide setup of repositories and directories and installation and configuration of a web server. POWER-Up provides support for setting up an EPEL mirror and supports installation of the nginx web server.

In order to facilitate software installation to clusters without internet access, the prep method is intended to be able to run without requiring access to the cluster nodes. This allows preloading of required software onto a laptop or other node prior to being connected to the cluster.

The init_client method should provide for license accept activities and setting up client nodes to access the POWER-Up node for any implemented repositories.

The install method needs to implement the logic for installing the desired software packages and binaries on the cluster nodes. POWER-Up includes Ansible. The install method may make use of any Ansible modules or POWER-Up provided playbooks.

11. Running the Watson Machine Learning (WML) Accelerator Software Install Module

11.1. Overview

The WML Accelerator software installation can be automated using the POWER-Up
software installer and the WML Accelerator Software Install Module. At current
time, the WMLA software installer only supports the licensed version of WMLA
running on Power hardware.

The WML Accelerator Software Install Module provides for rapid installation of
the WML Accelerator software to a homogeneous cluster of POWER8 or POWER9
servers.

The install module creates a web based software installation server on one of
the cluster nodes or another node with access to the cluster. The software
server is populated with repositories and files needed for installation of WML
Accelerator.

Once the software server is setup, installation scripts orchestrate the
software installation to one or more client nodes. Note that the software
installer node requires access to several open source repositories during the
‘preparation’ phase. During the preparation phase, packages which WML
Accelerator is dependent on are staged on the POWER-Up installer node. After
completion of the preparation phase, the installation requires no further
access to the open source repositories and can thus enable installation to
servers which do not have internet access.

Running POWER-Up software on one of the cluster nodes is supported. This will
“self-install” WML Accelerator on to the install along with the rest of the
cluster nodes at the same time. This eliminates the need for a dedicated
installer node but requires some additional controls to handle system reboots.
Rebooting is controlled via an Ansible variable, ‘pup_reboot’, that is set
automatically in the inventory. A global ‘pup_reboot=True’ is added to default
to original reboot behavior. If the installer node is included in the
inventory, a ‘pup_reboot=True’ host variable is automatically added to the
inventory (and anytime validation is called it will ensure this value is set,
preventing an override). Additional client nodes could also set
‘pup_reboot=True’ to prevent them from rebooting.

11.2. Support

Questions regarding the WML Accelerator installation software, installation, or
suggestions for improvement can be posted on IBM’s developer community forum at
https://developer.ibm.com/answers/index.html with the PowerAI tag.

Answered questions regarding PowerAI can be viewed at
https://developer.ibm.com/answers/topics/powerai/

11.3. For Advanced Users

User’s experienced with the WMLA installation process may find the advanced
user instructions useful. Appendix - B WMLA Installation for Advanced Users

11.4. Set up of the POWER-Up Software Installer Node

POWER-Up Node Prerequisites;

	The POWER-Up software installer currently runs under RHEL 7.5 or above.

	The user account used to run the POWER-Up software needs sudo privileges.

	Enable access to the Extra Packages for Enterprise Linux (EPEL) repository.
(https://fedoraproject.org/wiki/EPEL#Quickstart)

	Enable the common, optional and extras repositories.

On POWER8:

$ sudo subscription-manager repos --enable=rhel-7-for-power-le-rpms --enable=rhel-7-for-power-le-optional-rpms --enable=rhel-7-for-power-le-extras-rpms

On POWER9:

$ sudo subscription-manager repos --enable=rhel-7-for-power-9-rpms --enable=rhel-7-for-power-9-optional-rpms --enable=–enable=rhel-7-for-power-9-extras-rpms

	Insure that there is at least 16 GB of available disk space in the partition
holding the /srv directory:

$ df -h /srv

	Install the version of POWER-Up software appropriate for the version of WML
Accelerator you wish to install. The versions listed in the table below are
the versions tested with the corresponding release of WML Accelerator or
prior release of PowerAI Enterprise;

	WML Accelerator Release

	POWER-Up software installer vs

	Notes

	EOL date

	1.1.2

	software-install-b2.12

	Support for installation of PAIE 1.1.2

	

	1.2.0

	wmla120-1.0.0

	Support for installation of WMLA 1.2.0

	

	1.2.0

	wmla120-1.0.1

	Support for installation of WMLA 1.2.0

	

	1.2.0

	wmla120-1.0.2

	Validation checks. Install WMLA to installer node. Operating system install.

	

	1.2.1

	wmla121-1.0.0

	Support for installation of WMLA 1.2.1

	

From your home directory install the POWER-Up software and initialize the
environment. For additional information see Installing the POWER-Up Software:

$ sudo yum install git

$ git clone https://github.com/ibm/power-up -b wmla121-1.0.0

$ cd power-up

$./scripts/install.sh

$ source scripts/setup-env

NOTES:

	The latest functional enhancements and defect fixes can be obtained by
cloning the software installer without specifying the branch release.
Generally, you should use a release level specified in the table above unless
you are experiencing problems.:

git clone https://github.com/ibm/power-up

	Multiple users can install and use the WMLA installer software, however there
is only one software server created and there are no safeguards built in to
protect against concurrent modifications of the software server content, data
files or client nodes.

	Each user of the WMLA installer software must install the POWER-Up software
following the steps above.

11.5. Installation of WML Accelerator

Installation of the WML Accelerator software involves the following steps;

	Preparation of the client nodes

	Preparation of the software server

	Initialization of the cluster nodes

	Installation of software on the cluster nodes

11.5.1. Preparation of the client nodes

Before beginning automated installation, you should have completed the ‘Setup
for automated installer steps’ at
https://www.ibm.com/support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html
PowerUp includes a simple to use operating system installation utility which
can be used to install operating systems if needed. See Running Operating System Install

Before proceeding with preparation of the POWER-Up server, you will need to
gather the following information;

	Fully qualified domain name (FQDN) for each client node

	Userid and password or private ssh key for accessing the client nodes. Note
that for running an automated installation, the same user id and password
must exist on all client nodes and must be configured with sudo access. The
PowerUp software installer uses passwordless ssh access during the install.
If an ssh key is not available one will be generated and distributed to all
the cluster nodes.

11.5.2. Copy or Extract the WMLA software packages onto the PowerUp installation node.

Before beginning installation of WML Accelerator, the binary file containing
the licensed or eval version of the wmla software needs to be copied or
downloaded onto the installer node.
The files can be copied anywhere, but the POWER-Up software can locate them
quicker if the files are under a subdirectory of one of the /home/ directories
or the /root directory.

	WML Accelerator binary file. (ibm-wmla-*_*.bin)

Extract WMLA. Assuming the WMLA binary is in /home/user/wmla121bin:

cd /home/user/wmla121bin
bash ibm-wmla-1.2.1_ppc64le.bin

In addition to the Red Hat and EPEL repositories, the POWER-Up software server
needs access to the following repositories during the preparation phase;

	IBM AI repo

	Cuda driver

	Anaconda

These can be accessed using the public internet (URL’s are ‘built-in’) or from
an alternate web site such as an intranet mirror repository, another POWER-Up
server or from a mounted USB key.

NOTES:

	Extraction and license acceptance of WML Accelerator must be performed on the
same hardware architecture as the intended target nodes. If you are running
the POWER-Up installer software on an x_86 node, you must first extract the
files on an OpenPOWER node and then copy all of the extracted contents to the
POWER-Up installer node.

	Red Hat dependent packages are unique to Power8, Power9 and x86 and must be
downloaded on the target architecture. If you are running the WML Accelerator
installer on a different architecture than the architecture of your cluster
nodes, you must download the Red Hat dependent packages on a node of the same
architecture as your cluster and then copy them to a directory on the
installer node. A utility script is included to facilitate this process. To
use the script, insure you have ssh access with sudo privileges to an
appropriate node which has a subscription to the Red Hat ‘common’, ‘optional’
and ‘extras’ channels. (One of the cluster nodes or any other suitable node
can be used for this purpose). To run the script from the power-up directory
on the installer node:

./software/get-dependent-packages.sh userid hostname arch

The hostname can be a resolvable hostname or ip address. The
get-dependent-packages script will download the required packages on the
specified Power node and then move them to the ~/tempdl directory on the
installer node. After running the script, run/rerun the –prep phase of
installation. For dependent packages, choose option D (Create from files in a
local Directory) and enter the full absolute path to the tempdl/ directory. To
run the WMLA installer and refresh just the dependencies repo, execute the
following:

pup software --step dependency_repo --prep wmla*

Status of the Software Server

At any time, you can check the status of the POWER-Up software server by
running:

$ pup software --status wmla*

To use the automated installer with the evaluation version of WML Accelerator,
include the –eval switch in all pup commands. ie:

$ pup software --status --eval wmla*

Note: The POWER-Up software installer runs python installation modules.
Inclusion of the ‘.py’ in the software module name is optional. ie For WML
Accelerator version 1.2.1, wmla121 or wmla121.py are both acceptable.

Hint: The POWER-Up command line interface supports tab autocompletion.

Preparation is run with the following POWER-Up command:

$ pup software --prep wmla*

Preparation is interactive and may be rerun if needed. Respond to the prompts
as appropriate for your environment. Note that the EPEL, Cuda, dependencies
and Anaconda repositories can be replicated from the public web sites or from
alternate sites accessible on your intranet environment or from local disk (ie
from a mounted USB drive). Most other files come from the local file system.

11.5.3. Initialization of the Client Nodes

During the initialization phase, you will need to enter a resolvable hostname
for each client node in a cluster inventory file. If installing WMLA to the
installer node, it also must be entered in the cluster inventory file.
Optionally you may select from an ssh key in your .ssh/ directory. If one is
not available, an ssh key pair will be automatically generated. You will also
be prompted for a password for the client nodes. Initialization will set up all
client nodes for installation. Optionally during init clients you may run
validation checks against all cluster nodes. Validation checks validate the
following;

	hostnames are resolvable to FQDN for all nodes in the cluster

	Firewall ports are enabled (or firewall is disabled)

	Shared storage directories are properly mounted and appropriate permission
bits set

	Time is synchronizes across the cluster nodes

	Storage and memory resources are adequate on all cluster nodes

	Appropriate OS is installed on all cluster nodes

To initialize the client nodes and enable access to the POWER-Up software
server:

$ pup software --init-clients wmla*

NOTES:

	During the initialization phase you will be required to create an inventory
list of the nodes being installed. An editor window will be opened
automatically to enable this.

	During the initialization phase you will be required to provide values for
certain environment variables needed by Spectrum Conductor with Spark and
Spectrum Deep Learning Impact. An editor window will be automatically opened
to enable this.

	The CLUSTERADMIN variable will be automatically populated with the cluster
node userid provided during the cluster inventory creation.

	The DLI_SHARED_FS environment variable should be the full absolute path to
the shared file system mount point. (eg DLI_SHARED_FS: /mnt/my-mount-point).
The shared file system and the client node mount points need to be configured
prior to installing WML Accelerator.

	If left blank, the DLI_CONDA_HOME environment variable will be automatically
populated. If entered, it should be the full absolute path of the install
location for Anaconda. (ie DLI_CONDA_HOME: /opt/anaconda3)

	Initialization of client nodes can be rerun if needed.

11.5.4. Installation

To install the WML Accelerator software and prerequisites:

$ pup software --install wmla*

NOTES:

	Installation of WML Accelerator can be rerun if needed.

After completion of the installation of the WML Accelerator software, you must
configure Spectrum Conductor Deep Learning Impact and apply any outstanding
fixes.
Go to https://www.ibm.com/support/knowledgecenter/SSFHA8, choose your version
of WML Accelerator and then use the search bar to search for ‘Configure IBM
Spectrum Conductor Deep Learning Impact’.

11.5.5. Additional Notes

You can browse the content of the POWER-Up software server by pointing a web
browser at the address of POWER-Up installer node. Individual files can be
copied to client nodes using wget or curl if desired.

Dependent software packages
The WML Accelerator software is dependent on additional open source software
that is not shipped with WML Accelerator. Some of these dependent packages are
downloaded to the POWER-Up software server from enabled yum repositories during
the preparation phase and are subsequently available to the client nodes during
the install phase. Additional software packages can be installed in the
‘dependencies’ repo on the POWER-Up software server by listing them in the
power-up/software/dependent-packages.list file. Entries in this file can be
delimited by spaces or commas and can appear on multiple lines. Note that
packages listed in the dependent-packages.list file are not automatically
installed on client nodes unless needed by the PowerAI software. They can be
installed on a client node explicitly using yum on the client node (ie yum
install pkg-name). Alternatively, they can be installed on all client nodes at
once using Ansible (run from within the power-up directory):

$ ansible all -i playbooks/software_hosts --become --ask-become-pass -m yum -a "name=pkg-name"

or on a subset of nodes (eg the master nodes)

$ ansible master -i playbooks/software_hosts --become --ask-become-pass -m yum -a "name=pkg-name"

11.6. Uninstalling the POWER-Up Software

To uninstall the POWER-Up software and remove the software repositories, follow
the instructions below;

	Identify platform to remove:

$ PLATFORM="ppc64le"

	Stop and remove the nginx web server:

$ sudo nginx -s stop
$ sudo yum erase nginx -y

	If you wish to remove the http service from the firewall on this node:

$ sudo firewall-cmd --permanent --remove-service=http
$ sudo firewall-cmd --reload

	If you wish to stop and disable the firewall service on this node:

$ sudo systemctl stop firewalld.service
$ sudo systemctl disable firewalld.service

	Remove the yum.repo files created by the WMLA installer:

$ sudo rm /etc/yum.repos.d/cuda.repo
$ sudo rm /etc/yum.repos.d/nginx.repo

	Remove the software server content and repositories (replace
‘wmla121-ppc63le’ with current software module and architecture):

$ sudo rm -rf /srv/pup/wmla121-ppc64le/anaconda
$ sudo rm -rf /srv/pup/wmla121-ppc64le/wmla-license
$ sudo rm -rf /srv/pup/wmla121-ppc64le/spectrum-dli
$ sudo rm -rf /srv/pup/wmla121-ppc64le/spectrum-conductor
$ sudo rm -rf /srv/pup/wmla121-ppc64le/repos

	Remove the yum cache data depending on Computer Architecture:

$ sudo rm -rf /var/cache/yum/${PLATFORM}/7Server/cuda/
$ sudo rm -rf /var/cache/yum/${PLATFORM}/7Server/nginx/

	
	Uninstall the PowerUp Software

	
	Assuming you installed from your home directory, execute:

$ sudo rm -rf ~/power-up

12. Running the WMLA install module in an air-gapped environment

12.1. Overview

POWER-Up can be used to install Watson Machine Learning Accelerator in an
air-gapped environment (i.e. isolated network without access to public software
repositories).

Required dependencies first must be collected using
pup software wmla121 –prep in an environment with access repositories. Once
collected the dependencies can be bundled into an archive to facilitate easy
transfer into the air-gapped environment.

12.2. Collect and bundle dependencies

	Setup installer node

	Collect WMLA software

	Run –prep to collect WMLA dependencies:

$ pup software wmla121 --prep

	Run –download-install-deps to collect POWER-Up install dependencies:

$ pup software wmla121 --download-install-deps

	Run –status to verify all dependencies are present:

$ pup software wmla121 --status

	Run –bundle-to to archive dependencies in single file:

$ pup software wmla121 --bundle-to ./

	Archive can now be transferred:

$ ls wmla.*.tar

12.3. Install and run POWER-Up using dependency archive

	Extract archive:

$ sudo mkdir -p /srv/pup/wmla121-ppc64le/
$ sudo tar xvf wmla.*.tar -C /srv/pup/wmla121-ppc64le/

	Enable local yum repository:

$ echo "[pup-install]
name=POWER-Up Installation Dependencies
baseurl=file:///srv/pup/wmla121-ppc64le/repos/pup_install_yum/rhel/7/family/pup_install_yum/
enabled=1
gpgcheck=0" | sudo tee /etc/yum.repos.d/pup-install.repo

	Update yum cache:

$ sudo yum makecache

	Install Git:

$ sudo yum -y install git

	Clone POWER-UP from local repo:

$ git clone /srv/pup/wmla121-ppc64le/power-up.git/

	Checkout POWER-UP release tag:

$ cd power-up
$ git checkout wmla121-1.0.1

	Install POWER-Up software:

$./scripts/install.sh -p /srv/pup/wmla121-ppc64le/repos/pup_install_pip/
$ source ./scripts/setup-env

	Verify all dependencies are present:

$ pup software wmla121 --status

12.4. Continue with ‘–init-clients’ and ‘–install’

	Initialize Client Nodes

	Installation

13. Cluster Configuration File Specification

Specification Version: v2.0

Deployment of the OpenPOWER Cloud Reference Cluster is controlled by the
‘config.yml’ file. This file is stored in YAML format. The definition of
the fields and the YAML file format are documented below.

Each section represents a top level dictionary key:

version:

globals:

location:

deployer:

switches:

interfaces:

networks:

node_templates:

software_bootstrap:

13.1. version:

	Element

	Example(s)

	Description

	Required

	version:

	version: v2.0

	Config file version.

Release Branch Supported Config File Version

release-2.x version: v2.0

release-1.x version: 1.1

release-0.9 version: 1.0

	yes

13.2. globals:

globals:
 introspection:
 env_variables:
 switch_mode_mgmt:
 switch_mode_data:
 dhcp_lease_time:

	Element

	Example(s)

	Description

	Required

	globals:
 introspection:
 ...

	introspection: true

	Introspection shall be enabled. Evaluates to false if missing.

false

true

	no

	globals:
 env_variables:
 ...

	env_variables:
 https_proxy: http://192.168.1.2:3128
 http_proxy: http://192.168.1.2:3128
 no_proxy: localhost,127.0.0.1

	Apply environmental variables to the shell.

The example to the left would give the following result in bash:

export https_proxy=”http://192.168.1.2:3128”

export http_proxy=”http://192.168.1.2:3128”

export no_proxy=”localhost,127.0.0.1”

	no

	globals:
 switch_mode_mgmt:
 ...

	switch_mode_mgmt: active

	Sets POWER-Up management switch mode. Evaluates to active if missing.

passive

active

	no

	globals:
 switch_mode_data:
 ...

	switch_mode_data: active

	Sets POWER-Up data switch mode. Evaluates to active if missing.

passive

active

	no

	globals:
 dhcp_lease_time:
 ...

	dhcp_lease_time: 15m

dhcp_lease_time: 1h

	Sets DHCP lease time given to client nodes. Value can be in seconds, minutes (e.g. “15m”),
hours (e.g. “1h”) or “infinite” (lease does not expire).

	no

13.3. location:

location:
 time_zone:
 data_center:
 racks:
 - label:
 room:
 row:
 cell:

	Element

	Example(s)

	Description

	Required

	location:
 time_zone:
 ...

	time_zone: UTC

time_zone: America/Chicago

	Cluster time zone in tz database [https://en.wikipedia.org/wiki/List_of_tz_database_time_zones] format.

	no

	location:
 data_center:
 ...

	data_center: East Coast

data_center: Austin, TX

	Data center name to be associated with cluster inventory.

	no

	location:
 racks:
 - label:
 room:
 row:
 cell:
 ...

	racks:
 - label: rack1
 room: lab41
 row: 5
 cell: B
 - label: rack2
 room: lab41
 row: 5
 cell: C

	List of cluster racks.

Required keys:

label - Unique label used to reference this rack elsewhere in the config file.

Optional keys:

room - Physical room location of rack.

row - Physical row location of rack.

cell - Physical cell location of rack.

	yes

13.4. deployer:

deployer:
 gateway:
 networks:
 mgmt:
 - device:
 interface_ipaddr:
 container_ipaddr:
 bridge_ipaddr:
 vlan:
 netmask:
 prefix:

 client:
 - type:
 device:
 container_ipaddr:
 bridge_ipaddr:
 vlan:
 netmask:
 prefix:

	Element

	Example(s)

	Description

	Required

	deployer:
 gateway:
 ...

	gateway: true

	Deployer shall act as cluster gateway. Evaluates to false if missing.

false

true

The deployer will be configured as the default gateway for all client nodes.

Configuration includes adding a ‘MASQUERADE’ rule to the deployer’s ‘iptables’
NAT chain and setting the ‘dnsmasq’ DHCP service to serve the deployer’s client
management bridge address as the default gateway.

Note: Specifying the ‘gateway’ explicitly on any of the data networks will override

this behaviour.

	no

	deployer:
 networks:
 mgmt:
 - device:
 interface_ipaddr:
 container_ipaddr:
 bridge_ipaddr:
 vlan:
 netmask:
 prefix:
 ...
 ...

	mgmt:
 - device: enp1s0f0
 interface_ipaddr: 192.168.1.2
 netmask: 255.255.255.0
 - device: enp1s0f0
 container_ipaddr: 192.168.5.2
 bridge_ipaddr: 192.168.5.3
 vlan: 5
 prefix: 24

	Management network interface configuration.

Required keys:

device - Management network interface device.

Optional keys:

vlan - Management network vlan (tagged).

IP address must be defined with:

interface_ipaddr - Management interface IP address (non-tagged).

— or —

container_ipaddr - Container management interface IP address (tagged).

bridge_ipaddr - Deployer management bridge interface IP address (tagged).

Subnet mask must be defined with:

netmask - Management network bitmask.

— or —

prefix - Management network bit-length.

	yes

	deployer:
 networks:
 client:
 - type:
 device:
 container_ipaddr:
 bridge_ipaddr:
 vlan:
 netmask:
 prefix:

	client:
 - type: ipmi
 device: enp1s0f0
 container_ipaddr: 192.168.10.2
 bridge_ipaddr: 192.168.10.3
 vlan: 10
 netmask: 255.255.255.0
 - type: pxe
 device: enp1s0f0
 container_ipaddr: 192.168.20.2
 bridge_ipaddr: 192.168.20.3
 vlan: 20
 prefix: 24

	Client node BMC (IPMI) and OS (PXE) network interface configuration. Ansible
communicates with clients using this network during “post deploy” operations.

Required keys:

type - IPMI or PXE network (ipmi/pxe).

device - Management network interface device.

container_ipaddr - Container management interface IP address.

bridge_ipaddr - Deployer management bridge interface IP address.

vlan - Management network vlan.

Subnet mask must be defined with:

netmask - Management network bitmask.

— or —

prefix - Management network bit-length.

	yes

13.5. switches:

switches:
 mgmt:
 - label:
 hostname:
 userid:
 password:
 ssh_key:
 class:
 rack_id:
 rack_eia:
 interfaces:
 - type:
 ipaddr:
 vlan:
 port:
 links:
 - target:
 ipaddr:
 vip:
 netmask:
 prefix:
 ports:
 data:
 - label:
 hostname:
 userid:
 password:
 ssh_key:
 class:
 rack_id:
 rack_eia:
 interfaces:
 - type:
 ipaddr:
 vlan:
 port:
 links:
 - target:
 ipaddr:
 vip:
 netmask:
 prefix:
 ports:

	Element

	Example(s)

	Description

	Required

	switches:
 mgmt:
 - label:
 hostname:
 userid:
 password:
 class:
 rack_id:
 rack_eia:
 interfaces:
 - type:
 ipaddr:
 vlan:
 port:
 links:
 - target:
 ports:
 ...

	mgmt:
 - label: mgmt_switch
 hostname: switch23423
 userid: admin
 password: abc123
 class: lenovo
 rack_id: rack1
 rack_eia: 20
 interfaces:
 - type: outband
 ipaddr: 192.168.1.10
 port: mgmt0
 - type: inband
 ipaddr: 192.168.5.20
 port: 15
 links:
 - target: deployer
 ports: 1
 - target: data_switch
 ports: 2

	Management switch configuration. Each physical switch is defined as an
item in the mgmt: list.

Required keys:

label - Unique label used to reference this switch elsewhere in the config file.

Required keys in “active” switch mode:

userid - Userid for switch management account.

password 1 - Plain text password associated with userid.

ssh_key 1 - Path to SSH private key file associated with userid.

Required keys in “passive” switch mode:

class - Switch class (lenovo/mellanox/cisco/cumulus).

Optional keys:

hostname - Hostname associated with switch management network interface.

rack_id - Reference to rack label defined in the
locations: racks:= element.

rack_eia - Switch position within rack.

interfaces - See interfaces.

links - See links.

	1(1,2)

	Either password or ssh_key shall be specified, but not both.

	yes

	switches:
 data:
 - label:
 hostname:
 userid:
 password:
 class:
 rack_id:
 rack_eia:
 interfaces:
 - type:
 ipaddr:
 vlan:
 port:
 links:
 - target:
 ports:
 ...

	example #1:

data:
 - label: data_switch_1
 hostname: switch84579
 userid: admin
 password: abc123
 class: mellanox
 rack_id: rack1
 rack_eia: 21
 interfaces:
 - type: inband
 ipaddr: 192.168.1.21
 port: 15
 links:
 - target: mgmt_switch
 ports: 1
 - target: data_switch_2
 ports: 2

example #2:

data:
 - label: data_switch
 hostname: switch84579
 userid: admin
 password: abc123
 rack_id: rack1
 rack_eia: 21
 interfaces:
 - type: outband
 ipaddr: 192.168.1.21
 port: mgmt0
 links:
 - target: mgmt_switch
 ports: mgmt0

	Data switch configuration. Each physical switch is defined as an item in the
data: list.
Key/value specs are identical to mgmt switches.

	yes

	switches:
 mgmt:
 - ...
 interfaces:
 - type:
 ipaddr:
 port:
 data:
 - ...
 interfaces:
 - type:
 ipaddr:
 port:

	example #1:

interfaces:
 - type: outband
 ipaddr: 192.168.1.20
 port: mgmt0

example #2:

interfaces:
 - type: inband
 ipaddr: 192.168.5.20
 netmask: 255.255.255.0
 port: 15

	Switch interface configuration.

Required keys:

type - In-Band or Out-of-Band (inband/outband).

ipaddr - IP address.

Optional keys:

vlan - VLAN.

port - Port.

Subnet mask may be defined with:

netmask - Management network bitmask.

— or —

prefix - Management network bit-length.

	no

	switches:
 mgmt:
 - ...
 links:
 - target:
 ports:
 data:
 - ...
 links:
 - target:
 port:
 - ...
 links:
 - target:
 ipaddr:
 vip:
 netmask:
 vlan:
 ports:

	example #1:

mgmt:
 - label: mgmt_switch
 ...
 interfaces:
 - type: inband
 ipaddr: 192.168.5.10
 port: 15
 links:
 - target: deployer
 ports: 10
 - target: data_switch
 ports: 11
data:
 - label: data_switch
 ...
 interfaces:
 - type: outband
 ipaddr: 192.168.5.10
 vlan: 5
 port: mgmt0
 links:
 - target: mgmt_switch
 ports: mgmt0

example #2:

data:
 - label: data_1
 ...
 links:
 - target: mgmt
 ipaddr: 192.168.5.31
 vip: 192.168.5.254
 ports: mgmt0
 - target: data_2
 ipaddr: 10.0.0.1
 netmask: 255.255.255.0
 vlan: 4000
 ports:
 - 7
 - 8
 - label: data_2
 links:
 - target: mgmt
 ipaddr: 192.168.5.32
 vip: 192.168.5.254
 ports: mgmt0
 - target: data_2
 ipaddr: 10.0.0.2
 network: 255.255.255.0
 vlan: 4000
 ports:
 - 7
 - 8

	Switch link configuration. Links can be configured between any switches and/or
the deployer.

Required keys:

target - Reference to destination target. This value must be set to ‘deployer’
or correspond to another switch’s label (switches_mgmt, switches_data).

ports - Source port numbers (not target ports!). This can either be a single
port or a list of ports. If a list is given then the links will be
aggregated.

Optional keys:

ipaddr - Management interface IP address.

vlan - Management interface vlan.

vip - Virtual IP used for redundant switch configurations.

Subnet mask must be defined with:

netmask - Management network bitmask.

— or —

prefix - Management network bit-length.

In example #1 port 10 of “mgmt_switch” is cabled directly to the deployer and port 11
of “mgmt_switch” is cabled to the mangement port 0 of “data_switch”. An inband
management interface is configured with an IP address of ‘192.168.5.10’ for
“mgmt_switch”, and the dedicated management port 0 of “data_switch” is configured
with an IP address of “192.168.5.11” on vlan “5”.

In example #2 a redundant data switch configuration is shown. Ports 7 and 8 (on both
switches) are configured as an aggrated peer link on vlan “4000” with IP address of
“10.0.0.1/24” and “10.0.0.2/24”.

	no

13.6. interfaces:

interfaces:
 - label:
 description:
 iface:
 method:
 address_list:
 netmask:
 broadcast:
 gateway:
 dns_search:
 dns_nameservers:
 mtu:
 pre_up:
 vlan_raw_device:
 - label:
 description:
 DEVICE:
 BOOTPROTO:
 ONBOOT
 ONPARENT
 MASTER
 SLAVE
 BONDING_MASTER
 IPADDR_list:
 NETMASK:
 BROADCAST:
 GATEWAY:
 SEARCH:
 DNS1:
 DNS2:
 MTU:
 VLAN:

	Element

	Example(s)

	Description

	Required

	interfaces:
 - ...
 - ...

	
	List of OS interface configuration definitions. Each definition can be formatted
for either Ubuntu or RHEL.

	no

	interfaces:
 - label:
 description:
 iface:
 method:
 address_list:
 netmask:
 broadcast:
 gateway:
 dns_search:
 dns_nameservers:
 mtu:
 pre_up:
 vlan_raw_device:

	- label: manual1
 description: manual network 1
 iface: eth0
 method: manual

- label: dhcp1
 description: dhcp interface 1
 iface: eth0
 method: dhcp

- label: static1
 description: static interface 1
 iface: eth0
 method: static
 address_list:
 - 9.3.89.14
 - 9.3.89.18-9.3.89.22
 - 9.3.89.111-9.3.89.112
 - 9.3.89.120
 netmask: 255.255.255.0
 broadcast: 9.3.89.255
 gateway: 9.3.89.1
 dns_search: your.dns.com
 dns_nameservers: 9.3.1.200 9.3.1.201
 mtu: 9000
 pre_up: command

- label: vlan1
 description: vlan interface 1
 iface: eth0.10
 method: manual

- label: vlan2
 description: vlan interface 2
 iface: myvlan.20
 method: manual
 vlan_raw_device: eth0

- label: bridge1
 description: bridge interface 1
 iface: br1
 method: static
 address_start: 10.0.0.100
 netmask: 255.255.255.0
 bridge_ports: eth0
 bridge_fd: 9
 bridge_hello: 2
 bridge_maxage: 12
 bridge_stp: off

- label: bond1_interface0
 description: primary interface for bond 1
 iface: eth0
 method: manual
 bond_master: bond1
 bond_primary: eth0

- label: bond1_interface1
 description: secondary interface for bond 1
 iface: eth1
 method: manual
 bond_master: bond1

- label: bond1
 description: bond interface 1
 iface: bond1
 address_start: 192.168.1.10
 netmask: 255.255.255.0
 bond_mode: active-backup
 bond_miimon: 100
 bond_slaves: none

- label: osbond0_interface0
 description: primary interface for osbond0
 iface: eth0
 method: manual
 bond_master: osbond0
 bond_primary: eth0

- label: osbond0_interface1
 description: secondary interface for osbond0
 iface: eth1
 method: manual
 bond_master: osbond0

- label: osbond0
 description: bond interface
 iface: osbond0
 address_start: 192.168.1.10
 netmask: 255.255.255.0
 bond_mode: active-backup
 bond_miimon: 100
 bond_slaves: none

- label: osbond0_vlan10
 description: vlan interface 1
 iface: osbond0.10
 method: manual

- label: bridge10
 description: bridge interface for vlan10
 iface: br10
 method: static
 address_start: 10.0.10.100
 netmask: 255.255.255.0
 bridge_ports: osbond0.10
 bridge_stp: off

- label: osbond0_vlan20
 description: vlan interface 2
 iface: osbond0.20
 method: manual

- label: bridge20
 description: bridge interface for vlan20
 iface: br20
 method: static
 address_start: 10.0.20.100
 netmask: 255.255.255.0
 bridge_ports: osbond0.20
 bridge_stp: off

	Ubuntu formatted OS interface configuration.

Required keys:

label - Unique label of interface configuration to be referenced within
networks: node_templates: interfaces:.

Optional keys:

description - Short description of interface configuration to be included
as a comment in OS config files.

address_list - List of IP address to assign client interfaces referencing this
configuration. Each list element may either be a single IP
address or a range (formatted as <start_address>-<end_address>).

address_start - Starting IP address to assign client interfaces referencing
this configuration. Addresses will be assigned to each client
interface incrementally.

Optional “drop-in” keys:

The following key names are derived directly from the Ubuntu interfaces
configuration file (note that all “-” charactes are replaced with “_”). Values
will be copied directly into the interfaces file. Refer to the interfaces
manpage [http://manpages.ubuntu.com/manpages/xenial/man5/interfaces.5.html]

iface

method

netmask

broadcast

gateway

dns_search

dns_nameservers

mtu

pre_up

vlan_raw_device

Notes:

If ‘rename: true’ in
node_templates: physical_interfaces: pxe/data then the
iface value will be used to rename the interface.

If ‘rename: false’ in
node_templates: physical_interfaces: pxe/data then the
iface value will be ignored and the interface name assigned by the OS will be
used. If the iface value is referenced in any other interface definition it will
also be replaced.

	no

	interfaces:
 - label:
 description:
 DEVICE:
 TYPE:
 BOOTPROTO:
 ONBOOT
 ONPARENT:
 MASTER:
 SLAVE:
 BONDING_MASTER:
 IPADDR_list:
 NETMASK:
 BROADCAST:
 GATEWAY:
 SEARCH:
 DNS1:
 DNS2:
 MTU:
 VLAN:
 NM_CONTROLLED:

	- label: manual2
 description: manual network 2
 DEVICE: eth0
 TYPE: Ethernet
 BOOTPROTO: none
 ONBOOT: yes
 NM_CONTROLLED: no

- label: dhcp2
 description: dhcp interface 2
 DEVICE: eth0
 TYPE: Ethernet
 BOOTPROTO: dhcp
 ONBOOT: yes
 NM_CONTROLLED: no

- label: static2
 description: static interface 2
 DEVICE: eth0
 TYPE: Ethernet
 BOOTPROTO: none
 ONBOOT: yes
 IPADDR_list:
 - 9.3.89.14
 - 9.3.89.18-9.3.89.22
 - 9.3.89.111-9.3.89.112
 - 9.3.89.120
 NETMASK: 255.255.255.0
 BROADCAST: 9.3.89.255
 GATEWAY: 9.3.89.1
 SEARCH: your.dns.com
 DNS1: 9.3.1.200
 DNS2: 9.3.1.201
 MTU: 9000
 NM_CONTROLLED: no

- label: vlan3
 description: vlan interface 3
 DEVICE: eth0.10
 BOOTPROTO: none
 ONBOOT: yes
 ONPARENT: yes
 VLAN: yes
 NM_CONTROLLED: no

- label: bridge2
 description: bridge interface 2
 DEVICE: br2
 TYPE: Bridge
 BOOTPROTO: static
 ONBOOT: yes
 IPADDR_start: 10.0.0.100
 NETMASK: 255.255.255.0
 STP: off
 NM_CONTROLLED: no

- label: bridge2_port
 description: port for bridge if 2
 DEVICE: tap_br2
 TYPE: Ethernet
 BOOTPROTO: none
 ONBOOT: yes
 BRIDGE: br2
 NM_CONTROLLED: no

- label: bond2_interface0
 description: primary interface for bond 2
 DEVICE: eth0
 TYPE: Ethernet
 BOOTPROTO: manual
 ONBOOT: yes
 MASTER: bond2
 SLAVE: yes
 NM_CONTROLLED: no

- label: bond2_interface1
 description: secondary interface for bond 2
 DEVICE: eth1
 TYPE: Ethernet
 BOOTPROTO: manual
 ONBOOT: yes
 MASTER: bond2
 SLAVE: yes
 NM_CONTROLLED: no

- label: bond2
 description: bond interface 2
 DEVICE: bond2
 TYPE: Bond
 BONDING_MASTER: yes
 IPADDR_start: 192.168.1.10
 NETMASK: 255.255.255.0
 ONBOOT: yes
 BOOTPROTO: none
 BONDING_OPTS: "mode=active-backup miimon=100"
 NM_CONTROLLED: no

	Red Hat formatted OS interface configuration.

Required keys:

label - Unique label of interface configuration to be referenced within
networks: node_templates: interfaces:.

Optional keys:

description - Short description of interface configuration to be included as
a comment in OS config files.

IPADDR_list - List of IP address to assign client interfaces referencing this
configuration. Each list element may either be a single IP
address or a range (formatted as <start_address>-<end_address>).

IPADDR_start - Starting IP address to assign client interfaces referencing this
configuration. Addresses will be assigned to each client
interface incrementally.

Optional “drop-in” keys:

The following key names are derived directly from RHEL’s ifcfg configuration
files. Values will be copied directly into the ifcfg-<name> files. Refer to
the RHEL IP NETWORKING [https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Editing_Network_Configuration_Files.html#sec-Configuring_a_Network_Interface_Using_ifcg_Files] for usage.

DEVICE

TYPE

BOOTPROTO

ONBOOT

ONPARENT

MASTER

SLAVE

BONDING_MASTER

NETMASK

BROADCAST

GATEWAY

SEARCH

DNS1

DNS2

MTU

VLAN

NM_CONTROLLED

Notes:

If ‘rename: true’ in
node_templates: physical_interfaces: pxe/data then the
DEVICE value will be used to rename the interface.

If ‘rename: false’ in
node_templates: physical_interfaces: pxe/data then the
DEVICE value will be replaced by the interface name assigned by the OS. If the
DEVICE value is referenced in any other interface definition it will also
be replaced.

	no

13.7. networks:

networks:
 - label:
 interfaces:

	Element

	Example(s)

	Description

	Required

	networks:
 - label:
 interfaces:

	interfaces:
 - label: example1
 ...
 - label: example2
 ...
 - label: example3
 ...
networks:
 - label: all_nets
 interfaces:
 - example1
 - example2
 - example3
 - label: group1
 interfaces:
 - example1
 - example2
 - label: group2
 interfaces:
 - example1
 - example3

	The ‘networks’ list defines groups of interfaces. These groups can be assigned to items in the node_templates:
list.

Required keys:

label - Unique label of network group to be referenced within a node_templates: item’s ‘networks:’
value.

interfaces - List of interfaces assigned to the group.

	no

13.8. node_templates:

node_templates:
 - label:
 ipmi:
 userid:
 password:
 os:
 hostname_prefix:
 domain:
 profile:
 install_device:
 users:
 - name:
 password:
 groups:
 - name:
 kernel_options:
 redhat_subscription:
 physical_interfaces:
 ipmi:
 - switch:
 ports:
 pxe:
 - switch:
 interface:
 rename:
 ports:
 data:
 - switch:
 interface:
 rename:
 ports:
 interfaces:
 networks:
 roles:

	Element

	Example(s)

	Description

	Required

	node_templates:
 - label:
 ipmi:
 os:
 physical_interfaces:
 interfaces:
 networks:
 roles:

	- label: controllers
 ipmi:
 userid: admin
 password: pass
 os:
 hostname_prefix: ctrl
 domain: ibm.com
 profile: ubuntu-14.04-server-ppc64el
 install_device: /dev/sda
 kernel_options: quiet
 physical_interfaces:
 ipmi:
 - switch: mgmt_switch_1
 ports:
 - 1
 - 3
 - 5
 pxe:
 - switch: mgmt_switch_1
 ports:
 - 2
 - 4
 - 6

	Node templates define client node configurations. Existing IPMI credentials
and network interface physical connection information must be given to
allow Cluster POWER-Up to connect to nodes. OS installation characteristics
and post install network configurations are also defined.

Required keys:

label - Unique label used to reference this template.

ipmi - IPMI credentials. See node_templates: ipmi.

os - Operating system configuration. See node_templates: os.

physical_interfaces - Physical network interface port mappings. See
node_templates: physical_interfaces.

Optional keys:

interfaces - Post-deploy interface assignments. See node_templates:
interfaces.

networks - Post-deploy network (interface group) assignments. See
node_templates: networks.

roles - Ansible group assignment. See node_templates: roles.

	yes

	node_templates:
 - ...
 ipmi:
 userid:
 password:

	- label: ppc64el
 ipmi:
 userid: ADMIN
 password: admin
 ...
- lable: x86_64
 ipmi:
 userid: ADMIN
 password: ADMIN
 ...

	Client node IPMI credentials. Note that IPMI credentials must be consistent
for all members of a node template.

Required keys:

userid - IPMI userid.

password - IPMI password.

	yes

	node_templates:
 - ...
 os:
 hostname_prefix:
 domain:
 profile:
 install_device:
 users:
 - name:
 password:
 groups:
 - name:
 kernel_options:
 redhat_subscription:

	- ...
 os:
 hostname_prefix: controller
 domain: ibm.com
 profile: ubuntu-14.04-server-ppc64el
 install_device: /dev/sda
 users:
 - name: root
 password: <crypted password>
 - name: user1
 password: <crypted password>
 groups: sudo,testgroup1
 groups:
 - name: testgroup1
 - name: testgroup2
 kernel_options: quiet
 redhat_subscription:
 state: present
 username: joe_user
 password: somepass
 auto_attach: true

	Client node operating system configuration.

Required keys:

profile - Cobbler profile to use for OS installation. This
name usually should match the name of the
installation image (with or without the’.iso’ extension).

install_device - Path to installation disk device.

profile - Cobbler profile to use for OS installation. This
name usually should match the name of the
installation image (with or without the’.iso’ extension).

install_device - Path to installation disk device.

Optional keys:

hostname_prefix - Prefix used to assign hostnames to client nodes
belonging to this node template. A “-” and
enumeration is added to the end of the prefix to
make a unique hostname for each client node
(e.g. “controller-1” and “controoler-2”).

domain - Domain name used to set client FQDN.
(e.g. with ‘domain: ibm.com’: controller-1.ibm.com)
(e.g. without ‘domain’ value: controller-1.localdomain)

users - OS user accounts to create. All parameters in the
Ansible user module [http://docs.ansible.com/ansible/latest/user_module.html] are
supported. note: Plaintext user passwords are not
supported. For help see
Ansible’s guide for generating passwords [http://docs.ansible.com/ansible/latest/reference_appendices/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module].

groups - OS groups to create. All parameters in the Ansible
group module [http://docs.ansible.com/ansible/latest/group_module.html] are
supported.

kernel_options - Kernel options

redhat_subscription - Manage RHEL subscription. All parameters in the
Ansible redhat_subscription module [http://docs.ansible.com/ansible/latest/modules/redhat_subscription_module.html] are supported.

	yes

	node_templates:
 - ...
 physical_interfaces:
 ipmi:
 - switch:
 ports:
 pxe:
 - switch:
 interface:
 rename:
 ports:
 data:
 - switch:
 interface
 rename:
 ports:

	- ...
 physical_interfaces:
 ipmi:
 - switch: mgmt_1
 ports:
 - 7
 - 8
 - 9
 pxe:
 - switch: mgmt_1
 interface: eth15
 rename: true
 ports:
 - 10
 - 11
 - 12
 data:
 - switch: data_1
 interface: eth10
 rename: true
 ports:
 - 7
 - 8
 - 9
 - switch: data_1
 interface: eth11
 rename: false
 ports:
 - 10
 - 11
 - 12

	Client node interface port mappings.

Required keys:

ipmi - IPMI (BMC) interface port mappings. See physical_interfaces: ipmi.

pxe - PXE (OS) interface port mappings. See physical_interfaces:
pxe/data.

Optional keys:

data - Data (OS) interface port mappings. See physical_interfaces:
pxe/data.

	yes

	node_templates:
 - ...
 physical_interfaces:
 ipmi:
 - switch:
 ports:
 ...

	- ...
 physical_interfaces:
 ipmi:
 - switch: mgmt_1
 ports:
 - 7
 - 8
 - 9

	IPMI (BMC) interface port mappings.

Required keys:

switch - Reference to mgmt switch label defined in the switches: mgmt: element.

ports - List of port number/identifiers mapping to client node IPMI
interfaces.

In the example three client nodes are defined and mapped to ports 7,8,9 of
a management switch labeled “mgmt_1”.

	yes

	node_templates:
 - ...
 physical_interfaces:
 ...
 pxe:
 - switch:
 interface:
 rename:
 ports:
 data:
 - switch:
 interface:
 rename:
 ports

	- ...
 physical_interfaces:
 pxe:
 - switch: mgmt_1
 interface: dhcp1
 rename: true
 ports:
 - 10
 - 11
 - 12
 data:
 - switch: data_1
 interface: manual1
 rename: true
 ports:
 - 7
 - 8
 - 9
 - switch: data_1
 interface: manual2
 rename: false
 ports:
 - 10
 - 11
 - 12

	OS (PXE & data) interface port mappings.

Required keys:

switch - Reference to switch label defined in the switches: mgmt: or switches: data:
elements.

interface - Reference to interface label defined in the interfaces:
elements.

rename - Value (true/false) to control whether client node interfaces
will be renamed to match the interface iface (Ubuntu) or
DEVICE (RHEL) value.

ports - List of port number/identifiers mapping to client node OS
interfaces.

Note: For additional information on using rename see notes in
interfaces: (Ubuntu) and
interfaces: (RHEL).

	yes

	node_templates:
 - ...
 interfaces:

	interfaces:
 - label: data_int1
 ...
 - label: data_int2
 ...
 - label: data_int3
 ...
node_templates:
 - ...
 interfaces:
 - data_int1
 - data_int2
 - data_int3

	OS network interface configuration assignment.

Required keys:

interfaces - List of references to interface labels from the
top-level interfaces: dictionary.

	no

	node_templates:
 - ...
 networks:

	interfaces:
 - label: data_int1
 ...
 - label: data_int2
 ...
 - label: data_int3
 ...
networks:
 - label: data_group1
 interfaces:
 - data_int1
 - data_int2
 - data_int3
node_templates:
 - ...
 networks:
 - data_group1

	OS network interface configuration assignment by group.

Required keys:

networks - List of references to network labels from the
top-level networks: dictionary.

	no

	node_templates:
 - ...
 roles:

	roles:
 - controllers
 - power_servers

	Ansible role/group assignment.

Required keys:

roles - List of roles (Ansible groups) to assign to client nodes
associated with this node template. Names can be any string.

	no

13.9. software_bootstrap:

software_bootstrap:
 - hosts:
 executable:
 command:

	Element

	Example(s)

	Description

	Required

	software_bootstrap:
 - hosts:
 executable:
 command:

	software_bootstrap:
 - hosts: all
 command: apt-get update
 - hosts: openstackservers
 executable: /bin/bash
 command: |
 set -e
 apt update
 apt upgrade -y

	Software bootstrap defines commands to be run on client nodes after POWER-Up completes.
This is useful for various additional configuration activities, such as bootstrapping additional
software package installations.

Required keys:

hosts - Hosts to run commands on. The value can be set to ‘all’ to run on all hosts,
node_template labels, or role/group names.

command - Command to run.

Optional keys:

executable - Path to shell used to execute the command.

	no

14. Cluster Inventory File Specification

Specification Version: v2.0

TODO: Short description of inventory.yml and how it should be used.

Each section represents a top level dictionary key:

version:

location:

switches:

nodes:

14.1. version:

	Element

	Example(s)

	Description

	Required

	version:

	version: v2.0

	Inventory file version.

Release Branch Supported Inventory File Version

release-2.x version: v2.0

release-1.x version: 1.0

release-0.9 version: 1.0

	yes

14.2. location:

See Config Specification - Location Section.

14.3. switches:

See Config Specification - Switches Section.

14.4. nodes:

nodes:
 - label:
 hostname:
 rack_id:
 rack_eia:
 ipmi:
 switches:
 ports:
 userid:
 password:
 ipaddrs:
 macs:
 pxe:
 switches:
 ports:
 devices:
 ipaddrs:
 macs:
 rename:
 data:
 switches:
 ports:
 devices:
 macs:
 rename:
 os:
 interfaces:

	Element

	Example(s)

	Description

	Required

	nodes:
 label:
 ...

	label: ubuntu-servers

	Type.

	yes

	nodes:
 hostname:
 ...

	hostname: server-1

	Hostname.

	yes

	nodes:
 rack_id:
 ...

	rack_id: rack_1

	Rack ID.

	no

	nodes:
 rack_eia:
 ...

	rack_eia: U10

	Rack EIA.

	no

	nodes:
 ipmi:
 switches:
 ports:
 ipaddr:
 mac:
 userid:
 password:
 ...

	nodes:
 ipmi:
 switches:
 - mgmt_1
 - mgmt_2
 ports:
 - 1
 - 11
 ipaddrs:
 - 10.0.0.1
 - 10.0.0.2
 macs:
 - 01:23:45:67:89:AB
 - 01:23:45:67:89:AC
 userid: user
 password: passw0rd

	IPMI related parameters.

Required keys:

switches - Management switches.

ports - Management ports.

ipaddrs - IPMI interface ipaddrs.

macs - IPMI interface MAC addresses.

userid - IPMI userid.

password - IPMI password.

List items are correlated by index.

	yes

	nodes:
 pxe:
 switches:
 ports:
 devices:
 ipaddrs:
 macs:
 rename:
 ...

	nodes:
 pxe:
 switches:
 - mgmt_1
 - mgmt_2
 ports:
 - 2
 - 12
 devices:
 - eth16
 - eth17
 ipaddrs:
 - 10.0.1.1
 - 10.0.1.2
 macs:
 - 01:23:45:67:89:AD
 - 01:23:45:67:89:AE
 rename:
 - true
 - true

	PXE related parameters.

Required keys:

switches - Management switches.

ports - Management ports.

devices - Network devices.

ipaddrs - Interface ipaddrs.

macs - Interface MAC addresses.

rename - Interface rename flags.

List items are correlated by index.

	yes

	nodes:
 data:
 switches:
 ports:
 devices:
 macs:
 rename:
 ...

	nodes:
 data:
 switches:
 - data_1
 - data_2
 ports:
 - 1
 - 2
 devices:
 - eth26
 - eth27
 macs:
 - 01:23:45:67:89:AF
 - 01:23:45:67:89:BA
 rename:
 - true
 - true

	Data related parameters.

Required keys:

switches - Data switches.

ports - Data ports.

devices - Network devices.

macs - Interface MAC addresses.

rename - Interface rename flags.

List items are correlated by index.

	yes

	nodes:
 os:
 ...

	
	Operating system configuration.

See Config Specification - Node Templates under

the ‘os:’ section.

	yes

	nodes:
 interfaces:
 ...

	
	Interface definitions.

Interfaces assigned to a node in
Config Specification - Node Templates under
‘interfaces:’ or ‘networks:’ are
 included in this list. Interfaces are copied from
Config Specification - Interfaces section and modified

in the following ways:

* address_list and address_start keys are replaced with address and each value is replaced with a

single unique IP address.

* IPADDR_list and IPADDR_start keys are replaced with IPADDR and each value is replaced with a

single unique IP address.

* If ‘rename: false’ is set in
Config Specification - Node Templates under the

physical_interfaces: section, then
iface, DEVICE, and any interface value referencing them will be modified to

match the given interface name. See
Config Specification - interfaces:
And look in the ‘description’ column for
 ‘Ubuntu formatted OS interface configuration’
or ‘Red Hat formatted OS interface configuration’ for details.

	yes

15. Multiple Tenant Support

POWER-Up has the ability to segment a physical cluster into multiple isolated
groups of nodes, allowing multiple users / tenants to use the cluster at the same
time while maintaining complete isolation between tenants.

The process of sub-dividing a cluster into multiple groups is simple. You create a
config.yml file for each group of nodes and deploy the groups one at a time. Each
group must have a unique PXE and IPMI subnet and vlan number. The mgmt network can
be common for all groups. POWER-Up creates a container and isolated networks on the
deployer for each tenant in the cluster. A symbolic link to the inventory.yml file
for each group is created in the power-up directory with the name inventoryn.yml
where n is the number of the pxe vlan for the group.

[image: _images/MultiTenantCluster.png]
POWER-Up Support for multiple tenants

As an example, the figure above shows a basic cluster with four nodes. To configure
these into two groups of two nodes, create a config file for each group. Edit the
deployer section of each config file and under the client subsection, specify a
unique container_ipaddr, bridge_ipaddr and vlan for the ipmi and pxe networks
for each group of nodes.

For example, the two groups could be configured as below;

Group 1:

deployer:
 networks:
 mgmt:
 - device: enP10p1s0f0
 interface_ipaddr: 192.168.16.3
 netmask: 255.255.255.0
 client:
 - device: enP10p1s0f0
 type: ipmi
 container_ipaddr: 192.168.30.2
 bridge_ipaddr: 192.168.30.3
 netmask: 255.255.255.0
 vlan: 30
 - device: enP10p1s0f0
 type: pxe
 container_ipaddr: 192.168.40.2
 bridge_ipaddr: 192.168.40.3
 netmask: 255.255.255.0
 vlan: 40

Group 2:

deployer:
 networks:
 mgmt:
 - device: enP10p1s0f0
 interface_ipaddr: 192.168.16.3
 netmask: 255.255.255.0
 client:
 - device: enP10p1s0f0
 type: ipmi
 container_ipaddr: 192.168.31.2
 bridge_ipaddr: 192.168.31.3
 netmask: 255.255.255.0
 vlan: 31
 - device: enP10p1s0f0
 type: pxe
 container_ipaddr: 192.168.41.2
 bridge_ipaddr: 192.168.41.3
 netmask: 255.255.255.0
 vlan: 41

Next, edit the switch ports list in the node_templates section of each config file;

Group 1:

node_templates:
 - label: ubuntu1604-node
 ipmi:
 userid: ADMIN
 password: admin
 os:
 profile: ubuntu-16.04-server-ppc64el
 users:
 - name: user1
 password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
 groups: sudo
 install_device: /dev/sdj
 physical_interfaces:
 ipmi:
 - switch: mgmt1
 ports:
 - 1
 - 3
 pxe:
 - switch: mgmt1
 interface: pxe-ifc
 rename: true
 ports:
 - 2
 - 4
 data:
 - switch: data1
 interface: static_1
 rename: true
 ports:
 - 5
 - 6

Group 2:

node_templates:
 - label: ubuntu1604-node
 ipmi:
 userid: ADMIN
 password: admin
 os:
 profile: ubuntu-16.04-server-ppc64el
 users:
 - name: user1
 password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
 groups: sudo
 install_device: /dev/sdj
 physical_interfaces:
 ipmi:
 - switch: mgmt1
 ports:
 - 5
 - 7
 pxe:
 - switch: mgmt1
 interface: pxe-ifc
 rename: true
 ports:
 - 6
 - 8
 data:
 - switch: data1
 interface: static_1
 rename: true
 ports:
 - 7
 - 9
 data:
 - switch: data1
 interface: static_2
 rename: true
 ports:
 - 8
 - 10

For a complete config file for a basic cluster, See Appendix-D

Assuming your two config files are named config-T1.yml and config.T2.yml and
residing in the power-up directory, to deploy the two groups:

pup deploy config-T1.yml

After the first deploy completes:

pup deploy config-T2.yml

Note

POWER-Up does not currently support the execution of two deploys at the same time.
When deploying multiple groups of nodes, the groups must be deployed sequentially.

Note that if you move a node from an already deployed group to a new group,
it can take up to one hour for it’s IPMI IP lease to expire. If the node is
moved to a new subnet before the lease expires you will not be able to access
the nodes IPMI system until it renews it’s IP lease in the new subnet.
To avoid this, you can manually cycle power to the node. Alternately, you can use
the ipmitool to reset the BMC of the node to be moved:

ipmitool -I lanplus -H 192.168.30.21 -U ADMIN -P admin mc reset cold

then immediately run:

pup config --mgmt-switches new-group-config.yml

16. Developer Guide

POWER-Up development is overseen by a team of IBM engineers.

16.1. Git Repository Model

Development and test is orchestrated within the master branch. Stable
release-x.y branches are created off master and supported with bug fixes.
Semantic Versioning [http://semver.org/] is used for release tags and branch
names.

16.2. Coding Style

Code should be implemented in accordance with
PEP 8 – Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/].

16.3. Commit Message Rules

	
	Subject line

	
	First line of commit message provides a short description of change

	Must not exceed 50 characters

	First word after tag must be capitalized

	Must begin with one of the follwoing subject tags:

feat: New feature
fix: Bug fix
docs: Documentation change
style: Formatting change
refactor: Code change without new feature
test: Tests change
chore: Miscellaneous no code change
Revert Revert previous commit

	
	Body

	
	Single blank line seperates subject line and message body

	Contains detailed description of change

	Lines must not exceed 72 characters

	Periods must be followed by single space

Your Commit message can be validated within the tox environment
(see below for setup of the tox environment):

power-up$ tox -e commit-message-validate

16.4. Unit Tests and Linters

16.4.1. Tox

Tox is used to manage python virtual environments used to run unit tests and
various linters.

To run tox first install python dependencies:

power-up$./scripts/install.sh

Install tox:

power-up$ pip install tox

To run all tox test environments:

power-up$ tox

List test environments:

power-up$ tox -l
py36
bashate
flake8
ansible-lint
commit-message-validate
verify-copyright
file-format

Run only ‘flake8’ test environment:

power-up$ tox -e flake8

16.4.2. Unit Test

Unit test scripts reside in the power-up/tests/unit/ directory.

Unit tests can be run through tox:

power-up$ tox -e py36

Or called directly through python (be mindful of your python environment!):

power-up$ python -m unittest discover

16.4.3. Linters

Linters are required to run cleanly before a commit is submitted. The following
linters are used:

	Bash: bashate

	Python: pycodestyle/flake8/pylint

	Ansible: ansible-lint

Linters can be run through tox:

power-up$ tox -e bashate
power-up$ tox -e flake8
power-up$ tox -e ansible-lint

Or called directly (again, be mindful of your python environment!)

Pylint and pycodestyle validation is not automatically launched when
issuing the tox command. They need to be called out explicitly:

power-up$ tox -e pycodestyle
power-up$ tox -e pylint
power-up$ tox -e pylint-errors

16.4.4. File Format Validation

Ensure that each text file is in unix mode where lines are terminated by a
linefeed:

power-up$ tox -e file-format

16.4.5. Copyright Date Validation

If any changed files include a copyright header the year must be current. This
rule is enforced within a tox environment:

power-up$ tox -e verify-copyright

17. Building the Introspection Kernel and Filesystem

Note: Introspection is not yet supported in POWER-Up 2.0

Introspection enables the clients to boot a Linux mini-kernel and filesystem
prior to deployment. This allows POWER-Up to extract client hardware
resource information and provides an environment for users to run configuration
scripts (e.g. RAID volume management).

17.1. Building

	By default, the introspection kernel is built automatically whenever one of
the following commands are executed, and the introspection option is enabled
in the config.yml file

cd power-up/playbooks
ansible_playbook -i hosts lxc-create.yml -K
ansible_playbook -i hosts lxc-introspect.yml -K
ansible_playbook -i hosts introspection_build.yml -K

or

gen deploy #if introspection was specified in the config.yml file

	Wait for introspection_build.yml playbook to complete. If the rootfs.cpio.gz and
vmlinux images already exist, the playbook will not rebuild them.

	The final kernel and filesystem will be copied from the deployer container to the
host filesystem under ‘power-up/os-images/introspection’

17.1.1. Buildroot Config Files

Introspection includes a default buildroot and linux kernel config files.

These files are located in introspection/configs directory under power-up.

If there are any additional features or packages that you wish to add to the
introspection kernel, they can be added to either of the configs prior to
setup.sh being executed.

17.2. Run Time

Average load and build time on a POWER8 Server(~24 mins)

17.3. Public Keys

To append a public key to the buildroot filesystem

	Build.sh must have been run prior

	Execute add_key.sh <key.pub>

	The final updated filesystem will be placed into
output/rootfs.cpio.gz

18. Appendix - A Using the ‘pup’ Program

The ‘pup’ program is the primary interface to the Cluster POWER-Up software.
Help can be accessed by typing:

pup -h
or
pup --help

Help is context sensitive and will give help appropriate for the argument.
For example, ‘pup setup -h’ will provide help on the setup function.

Usage;

pup [command] [<args>] [options] [–help | -h]

Cluster POWER-Up has extensive logging capabilities. Logging can take place to
the screen and a log file (power-up/logs/gen) and the logging level can be
set individually for the screen and file. By default, file logging is set to
debug and screen logging is set to info.

To enable detailed logging to the screen, add the -p debug option. For additional
log level help, enter -h at the end of a pup command. (ie pup setup -h)

Auto completion is enabled for the pup program. At any level of command
entry, a single tab will complete the current command if it is distinguishable.
Double tabbing will list all available options for that level of
command input.

The following top level commands are provided;

	config

	deploy

	post-deploy

	setup

	software

	utils

	validate

18.1. Bare Metal Deployment

The deploy command deploys your cluster;

pup deploy [config-file-name]

For bare metal deploy, POWER-Up goes through the following steps when you enter pup deploy;

	validate the config file

	sets up interfaces and networks on the deployer node

	configures the management switches

	discovers and validates the cluster hardware

	creates a container for hosting the rest of the POWER-Up software

	deploys operating systems to your cluster node

	sets up ssh keys and user accounts on your cluster nodes

	configures networking on your cluster nodes

	configures your data switches

After installing the operating systems, POWER-Up will pause and wait for input
before executing the last 3 steps above. This provides a convenient place to
check on the cluster hardware before proceeding. If desired, you can stop
POWER-Up at that point and re-start later by entering ‘pup post-deploy’.

It is sometimes useful when first bringing up the cluster hardware to be able to
run the initial steps above individually. The following commands can be used to
individually run / re-run the first four steps above:

pup validate --config-file [config-file-name]
pup setup --networks [config-file-name]
pup config --mgmt-switches [config-file-name]
pup validate --cluster-hardware [config-file-name]

Note that the above steps must initially be run in order. After successfully
completing the above steps in order, they can be re-run individually. When isolating
cluster hardware issues, it is useful to be able to re-run pup validate
–cluster-hardware. pup validate –config-file may be run any time as often as
needed.

18.2. Software Installation

POWER-Up provides the ability to install software to a cluster of nodes.

To deploy software;

pup software [{–prep, –install}] [software-name]

Software installation is broken into two phases. The ‘prep’ phase copies / downloads
packages and binaries and syncs any specified repositories to the POWER-Up node. The
nginx web server is installed and software is moved to the /srv directory and made available via the web server. The install phase creates linkages on the client nodes to repositories
on the POWER-Up node and then installs and configures the software.

After software is installed in /srv/ or directory associated with the software dependent package. The software can be archived
by using this command:

pup software <software>.py --bundle-to "/path/to/directory/"

This will take some time depending on size of directory and will produce a tarfile
so it can be stored in a device or transferred to other operating system:

INFO - /tmp/srv/tmp8cut_euk
INFO - not compressing
INFO - archiving /srv/ to /tmp/srv/tmp8cut_euk
INFO - created: /tmp/srv/tmp8cut_euk, size in bytes: 1075200, total time: 0 seconds

To extract tar file simply use linux command:

tar -xvf /tmp/srv/tmp8cut_euk # to extract the file to the current directory or directory of choice.

if pup software is installed run command on deployment node:

pup software <software>.py --extract-from /path/to/your/tarfile/tmp8cut_euk

this will extract software to assigned pup software directory as described in the <software>.py file

18.3. Utilities

POWER-Up provides utility functions to be used on deployer node.

To archive a software directory:

pup utils <config-file>.yml --bundle-to "/tmp/srv" --bundle-from "/srv/"

19. Appendix - B WMLA Installation for Advanced Users

This abbreviated instruction list is for advanced users already familiar with the WMLA install process.

	Prepare the Client Nodes by completing the ‘Setup for automated installer steps’ at https://www.ibm.com/support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html

	Enable EPEL repositories. (https://fedoraproject.org/wiki/EPEL#Quickstart):

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

	Enable Red Hat common, optional and extras repositories.

	Install the PowerUp software:

sudo yum install git

git clone https://github.com/ibm/power-up -b wmla121-1.0.0

cd power-up

./scripts/install.sh

source scripts/setup-env

	Install Miniconda (Power instructions shown. Accept the license and respond no to the prompt to modify your .bashrc file.):

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-ppc64le.sh

bash Miniconda3-latest-Linux-ppc64le.sh

	Activate conda:

. miniconda3/etc/profile.d/conda.sh
conda activate base

	Extract WMLA. Assuming the WMLA binary is in /home/user/wmla121bin:

cd /home/user/wmla121bin
bash ibm-wmla-1.2.1_ppc64le.bin

	Deactivate Conda:

conda deactivate

	Install WMLA:

pup software --prep wmla121
pup software --status wmla121
pup software --init-clients wmla121
pup software --install wmla121

20. Appendix - D Example system 1 - Basic Flat Cluster

[image: _images/basic-cluster.png]
A basic flat cluster with two node types

A Sample config.yml file for a basic flat cluster

The config file below defines two compute node templates with multiple network
interfaces. The deployer node needs to have access to the internet which shown
via one of the dotted line paths in the figure above or alternately via a
wireless or dedicated interface.

Copyright 2018 IBM Corp.
#
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

version: v2.0

globals:
 introspection: False
 switch_mode_mgmt: active

location:
 racks:
 - label: rack1

deployer:
 networks:
 mgmt:
 - device: enP10p1s0f0
 interface_ipaddr: 192.168.16.3
 netmask: 255.255.255.0
 client:
 - device: enP10p1s0f0
 type: ipmi
 container_ipaddr: 192.168.30.2
 bridge_ipaddr: 192.168.30.3
 netmask: 255.255.255.0
 vlan: 30
 - device: enP10p1s0f0
 type: pxe
 container_ipaddr: 192.168.40.2
 bridge_ipaddr: 192.168.40.3
 netmask: 255.255.255.0
 vlan: 40

switches:
 mgmt:
 - label: mgmt1
 class: lenovo
 userid: admin
 password: passw0rd
 interfaces:
 - type: outband
 ipaddr: 192.168.16.20
 port: 1
 links:
 - target: deployer
 ports: 46
 # Note that there must be a data switch defined in the config file. In this
 # case the data and mgmt switch are the same physical switch
 data:
 - label: data1
 class: lenovo
 userid: admin
 password: passw0rd
 interfaces:
 - type: outband
 ipaddr: 192.168.16.25
 links:
 - target: deployer
 ports: 47

interfaces:
 - label: pxe-ifc
 description: pxe interface
 iface: eth0
 method: dhcp

 - label: static_1
 description: static network 1
 iface: eth1
 method: static
 address_list:
 - 192.168.1.2
 - 192.168.1.3
 - 192.168.1.4
 netmask: 255.255.255.0
 broadcast: 192.168.1.255
 gateway: 192.168.1.1

 - label: static_2
 description: static network 2
 iface: eth2
 method: static
 address_list:
 - 192.168.2.2
 - 192.168.2.3
 - 192.168.2.4
 netmask: 255.255.255.0
 broadcast: 192.168.2.255
 gateway: 192.168.2.1

networks:
 - label: static-ifc1
 interfaces:
 - static_1

node_templates:
 - label: node-type1
 ipmi:
 userid: ADMIN
 password: admin
 os:
 profile: ubuntu-16.04-server-ppc64el
 users:
 - name: user1
 password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
 groups: sudo
 install_device: /dev/sdj
 physical_interfaces:
 ipmi:
 - switch: mgmt1
 ports:
 - 1
 pxe:
 - switch: mgmt1
 interface: pxe-ifc
 rename: true
 ports:
 - 2
 data:
 - switch: data1
 interface: static_1
 rename: true
 ports:
 - 5
 - label: node-type2
 ipmi:
 userid: ADMIN
 password: admin
 os:
 profile: ubuntu-16.04-server-ppc64el
 users:
 - name: user1
 password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
 groups: sudo
 install_device: /dev/sdj
 physical_interfaces:
 ipmi:
 - switch: mgmt1
 ports:
 - 3
 - 5
 pxe:
 - switch: mgmt1
 interface: pxe-ifc
 rename: true
 ports:
 - 4
 - 6
 data:
 - switch: data1
 interface: static_1
 rename: true
 ports:
 - 6
 - 8
 - switch: data1
 interface: static_2
 rename: true
 ports:
 - 7
 - 9

21. Appendix - E Example system 2 - Basic Cluster with High Availability Network

[image:]
High Availability Network using MLAG / vPC

The config file below defines two compute node templates and multiple network
templates. The sample cluster can be configured with the provided config.yml file.
The deployer node needs to have access to the internet for accessing packages.

Various OpenPOWER nodes can be used such as the S821LC. The deployer node can be OpenPOWER
or alternately a laptop which does not need to remain in the cluster. The data switch can be
Mellanox SX1700 or SX1410.

Copyright 2018 IBM Corp.
#
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

version: v2.0

globals:
 introspection: False
 switch_mode_mgmt: active

location:
 time_zone: America/Chicago
 racks:
 - label: rack1

deployer:
 networks:
 mgmt:
 - device: enP1p10s0f0
 interface_ipaddr: 192.168.32.253
 prefix: 24
 client:
 - device: enP1p10s0f0
 type: pxe
 container_ipaddr: 192.168.10.2
 bridge_ipaddr: 192.168.10.3
 netmask: 255.255.255.0
 vlan: 10
 - device: enP1p10s0f0
 type: ipmi
 container_ipaddr: 192.168.12.2
 bridge_ipaddr: 192.168.12.3
 prefix: 24
 vlan: 12

switches:
 mgmt:
 - label: mgmt_1
 class: lenovo
 userid: admin
 password: passw0rd
 rack_id: rack1
 interfaces:
 - type: outband
 ipaddr: 192.168.32.20
 port: mgmt0
 links:
 - target: deployer
 ports:
 - 1
 - target: data1_1
 ports:
 - 2
 - target: data1_2
 ports:
 - 3

 data:
 - label: data_1_1
 class: mellanox
 userid: admin
 password: passw0rd
 rack_id: rack1
 interfaces:
 - type: outband
 ipaddr: 192.168.32.25
 port: mgmt0
 links:
 - target: mgmt_1
 ports:
 - mgmt0
 - target: data1_2
 ipaddr: 10.0.0.1
 prefix: 24
 vlan: 4000
 ports:
 - 35
 - 36
 - label: data_1_2
 class: mellanox
 userid: admin
 password: passw0rd
 rack_id: rack1
 interfaces:
 - type: outband
 ipaddr: 192.168.32.30
 port: mgmt0
 links:
 - target: mgmt_1
 ports: mgmt0
 - target: data1_1
 ipaddr: 10.0.0.2
 netmask: 255.255.255.0
 vlan: 4000
 ports:
 - 35
 - 36

interfaces:
 - label: pxe-ifc
 description: pxe interface
 iface: eth0
 method: dhcp

 - label: bond1_interface1
 description: primary interface for bond1
 iface: eth1
 method: manual
 bond_master: bond1
 bond_primary: eth0

 - label: bond1_interface2
 description: secondary interface for bond1
 iface: eth2
 method: manual
 bond_master: bond1

 - label: bond1
 description: bond interface 1
 iface: bond1
 bond_mode: active-backup
 bond_miimon: 100
 bond_slaves: none

 - label: bond1_vlan10
 description: vlan10 interface off bond1
 iface: bond1.10
 method: manual

 - label: bond1_br10
 description: bridge interface off bond1 vlan10
 iface: br10
 method: static
 address_start: 172.16.10.1
 netmask: 255.255.255.0
 bridge_ports: bond1.10
 bridge_stp: off

 - label: bond1_vlan20
 description: vlan20 interface off bond1
 iface: bond1.20
 method: manual

 - label: bond1_br20
 description: bridge interface off bond1 vlan20
 iface: br20
 method: static
 address_start: 172.16.20.1
 netmask: 255.255.255.0
 bridge_ports: bond1.20
 bridge_stp: off

networks:
 - label: bond1_br10
 interfaces:
 - bond1_interface1
 - bond1_interface2
 - bond1
 - bond1_vlan10
 - bond1_br10

 - label: bond1_br20
 interfaces:
 - bond1_interface1
 - bond1_interface2
 - bond1
 - bond1_vlan20
 - bond1_br20

 - label: bond1_br10_br20
 interfaces:
 - bond1_interface1
 - bond1_interface2
 - bond1
 - bond1_vlan10
 - bond1_br10
 - bond1_vlan20
 - bond1_br20

node_templates:
 - label: controllers
 ipmi:
 userid: ADMIN
 password: admin
 os:
 profile: ubuntu-16.04-server-ppc64el
 users:
 - name: user1
 password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
 groups: sudo
 install_device: /dev/sdj
 physical_interfaces:
 ipmi:
 - switch: mgmt_1
 ports:
 - 10
 - 12
 pxe:
 - switch: mgmt_1
 interface: pxe-ifc
 rename: true
 ports:
 - 11
 - 13
 data:
 - switch: data_1_1
 interface: bond1_interface1
 rename: true
 ports:
 - 18
 - 19
 - switch: data_1_2
 interface: bond1_interface2
 rename: true
 ports:
 - 18
 - 19
 interfaces:

 networks:
 - bond1_br10_br20

 - label: compute
 ipmi:
 userid: ADMIN
 password: admin
 os:
 profile: ubuntu-16.04-server-ppc64el
 users:
 - name: user1
 password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
 groups: sudo
 install_device: /dev/sdj
 physical_interfaces:
 ipmi:
 - switch: mgmt_1
 ports:
 - 14
 - 16
 pxe:
 - switch: mgmt_1
 interface: pxe-ifc
 rename: true
 ports:
 - 15
 - 17
 data:
 - switch: data_1_1
 interface: bond1_interface1
 rename: true
 ports:
 - 20
 - 21
 - switch: data_1_2
 interface: bond1_interface2
 rename: true
 ports:
 - 20
 - 21
 interfaces:

 networks:
 - bond1_br10

 - label: storage
 ipmi:
 userid: ADMIN
 password: admin
 os:
 profile: ubuntu-16.04-server-ppc64el
 users:
 - name: user1
 password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
 groups: sudo
 install_device: /dev/sdj
 physical_interfaces:
 ipmi:
 - switch: mgmt_1
 ports:
 - 18
 - 20
 pxe:
 - switch: mgmt_1
 interface: pxe-ifc
 rename: true
 ports:
 - 19
 - 21
 data:
 - switch: data_1_1
 interface: bond1_interface1
 rename: true
 ports:
 - 22
 - 23
 - switch: data_1_2
 interface: bond1_interface2
 rename: true
 ports:
 - 22
 - 23
 interfaces:

 networks:
 - bond1_br20

22. Appendix - F Detailed POWER-Up Flow (needs update)

This section not yet completed for POWER-Up 2.0.

23. Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox SX1410

For the Lenovo G8052 switch, the following commands can be used to
configure management access on interface 1. Initially the switch should be
configured with a serial cable so as to avoid loss of communication with the switch
when configuring management access. Alternately you can configure a second
management interface on a different subnet and vlan.

Enable configuration mode and create vlan:

RS 8052> enable
RS 8052# configure terminal
RS 8052 (config)# vlan 16 (sample vlan #)
RS G8052(config-vlan)# enable
RS G8052(config-vlan)# exit

Enable IP interface mode for the management interface:

RS 8052 (config)# interface ip 1

Assign a static ip address, netmask and gateway address to the management interface.
This must match the address specified in
the config.yml file (keyname: ipaddr-mgmt-switch:) and be in a
different subnet than your cluster management subnet. Place this
interface in the above created vlan:

RS 8052 (config-ip-if)# ip address 192.168.16.20 (example IP address)
RS 8052 (config-ip-if)# ip netmask 255.255.255.0
RS 8052 (config-ip-if)# vlan 16
RS 8052 (config-ip-if)# enable
RS 8052 (config-ip-if)# exit

Configure the default gateway and enable the gateway:

ip gateway 1 address 192.168.16.1 (example ip address)
ip gateway 1 enable

Note: if you are SSH’d into the switch on interface 1, be careful not to
cut off access if changing the ip address. If needed, additional
management interfaces can be set up on interfaces 2, 3 or 4.

For the Mellanox switch, the following commands can be used to configure
the MGMT0 management port;

switch (config) # no interface mgmt0 dhcp

switch (config) # interface mgmt0 ip address <IP address> <netmask>

For the Mellanox switch, the following commands can be used to configure
an in-band management interface on an existing vlan ; (example vlan 10)

switch (config) # interface vlan 10

switch (config interface vlan 10) # ip address 10.10.10.10 /24

To check the config;

switch (config) # show interfaces vlan 10

24. Appendix - H Recovering from POWER-Up Issues (needs update)

This section not yet updated for POWER-Up 2.0

25. Appendix - I Using the ‘teardown’ Program

The ‘teardown’ program allows for select ‘tear down’ of the POWER-Up
environment on the deployer node and cluster switches. It is primarily used
when redeploying your cluster for test purposes, after taking corrective action
after previous deployment failures or for removing the POWER-Up environment
from the deployer node.

Similar to the pup program, teardown has built in help and supports tab completion.

Usage:

teardown <command> [<args>] [options] [–help | -h]

The teardown program can perform the following
functions;

	Destroy the container associated with the current config.yml file.
$ teardown deployer –container

	Undo the deployer network configuration associated with the current
config.yml file
$ teardown deployer –networks

	Undo the configuration of the data switches associated with the current
config.yml file.
$ teardown switches –data

NOTE: teardown actions are driven by the current config.yml file. If you
wish to make changes to your cluster configuration, be sure to teardown the
existing cluster configuration before changing your config.yml file.

For a typical re-deploy where the POWER-Up software does not need
updating, you should teardown the deployer container and the data switches
configuration.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to POWER-Up User’s Guide documentation!

 		
 Document Preface and Scope

 		
 Document Control

 		
 Revision History

 		
 Related Documentation

 		
 Release Table

 		
 Introduction

 		
 Operating System Installation Overview

 		
 Software Installation Overview

 		
 Node Configuration

 		
 Cluster Deploymment Overview

 		
 Hardware and Architecture Overview

 		
 Networking

 		
 Compute Nodes

 		
 Supported Hardware

 		
 Prerequisite Hardware Setup

 		
 Setting up the Deployer Node

 		
 Operating Sytem and Package setup of the Deployer Node

 		
 Network Configuration of the Deployer Node

 		
 Hardware initialization

 		
 Installing the POWER-Up Software

 		
 Creating the Config File

 		
 Switch Mode

 		
 Active Switch Mode

 		
 Passive Switch Mode

 		
 Networks

 		
 Node Templates

 		
 Renaming Interfaces

 		
 Install Device

 		
 Post POWER-Up Activities

 		
 Running the POWER-Up Cluster Deployment Software

 		
 Installing and Running the POWER-Up code. Step by Step Instructions

 		
 Passive Switch Mode Special Instructions

 		
 SSH Keys

 		
 Running Operating System Install

 		
 Network Interface Setup

 		
 Node Selection

 		
 Installation Status

 		
 Running the POWER-Up Software Installation Software

 		
 Creating Software Install Modules

 		
 Running the Watson Machine Learning (WML) Accelerator Software Install Module

 		
 Overview

 		
 Support

 		
 For Advanced Users

 		
 Set up of the POWER-Up Software Installer Node

 		
 Installation of WML Accelerator

 		
 Preparation of the client nodes

 		
 Copy or Extract the WMLA software packages onto the PowerUp installation node.

 		
 Initialization of the Client Nodes

 		
 Installation

 		
 Additional Notes

 		
 Uninstalling the POWER-Up Software

 		
 Running the WMLA install module in an air-gapped environment

 		
 Overview

 		
 Collect and bundle dependencies

 		
 Install and run POWER-Up using dependency archive

 		
 Continue with ‘–init-clients’ and ‘–install’

 		
 Cluster Configuration File Specification

 		
 version:

 		
 globals:

 		
 location:

 		
 deployer:

 		
 switches:

 		
 interfaces:

 		
 networks:

 		
 node_templates:

 		
 software_bootstrap:

 		
 Cluster Inventory File Specification

 		
 version:

 		
 location:

 		
 switches:

 		
 nodes:

 		
 Multiple Tenant Support

 		
 Developer Guide

 		
 Git Repository Model

 		
 Coding Style

 		
 Commit Message Rules

 		
 Unit Tests and Linters

 		
 Tox

 		
 Unit Test

 		
 Linters

 		
 File Format Validation

 		
 Copyright Date Validation

 		
 Building the Introspection Kernel and Filesystem

 		
 Building

 		
 Buildroot Config Files

 		
 Run Time

 		
 Public Keys

 		
 Appendix - A Using the ‘pup’ Program

 		
 Bare Metal Deployment

 		
 Software Installation

 		
 Utilities

 		
 Appendix - B WMLA Installation for Advanced Users

 		
 Appendix - D Example system 1 - Basic Flat Cluster

 		
 Appendix - E Example system 2 - Basic Cluster with High Availability Network

 		
 Appendix - F Detailed POWER-Up Flow (needs update)

 		
 Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox SX1410

 		
 Appendix - H Recovering from POWER-Up Issues (needs update)

 		
 Appendix - I Using the ‘teardown’ Program

_images/MultiTenantCluster.png
Data Switch
192.168.16 25

Mgt Switch
192.168.16 5

| __ |m

_ B _
M B | AEEE 5

T I

RN B _

| __ !

- I |

@ o || |

1 3| ! |

! N _

IEEEIREREE
T B B BT] B el L

| |

| L |

_images/Network-setup.png
Welcome to PowerUP

BMC
BMC
BMC
BMC
BMC

PXE
PXE
PXE
PXE

VLAN number
subnet prefix
subnet
Ethernet Ifc
address mode

VLAN number
subnet prefix
subnet
Ethernet Ifc

Press F1 for field help

None
255.255.255
192.168.1.0
enP1p9s0fe
() dnep
(X) static

None

255.255.255.

192.168.2.0
enP1p9sefe

.0 24

0 24

Cancel

0K

_images/Node-selection.png
Welcome to PowerUP

BMC userid
BMC password

Host name
IS0 image file

Devices found
BMCs found

Node list

Scan for nodes

Press F1 for field help

root
@penBmc

compute
/home/ ray/power-up/os-inages/RHEL-ALT-7.6-20181010.0-Server-ppc64le-dvdl.iso

7
6

SERTAL NUMBER PART NUMBER MAC ADDRESS IP ADDRESS BMC TYPE
[1 788364A 8335-GTH H 192.168.1.1 openbmc
[1 788365A 8335-GTH 192.168.1.2 openbmc
[X] 1
[1 78835EA 8335-GTH 192.168.1.4 openbmc
[1 78835FA 8335-GTH 192.168.1.5 openbmc
[1 788361A 8335-GTH 192.168.1.6 openbmc

Edit network config

Cancel

0K

_images/Node-status-start.png
Welcome to PowerUP Press F1 for field help

PXE Boot
Start Time 05/12/2019 09:07:41 PM CDT
Finished 0/1

Detailed node installation status

Serial BMC MAC Address BMC IP Address

JWSBSW16200070 14:63:08:00:16:C2 192.168.76.22

Host IP Address

192.168.77.173

0S Info

Red Hat Enterprise Linux Server 7.6 (Maipo)

Install Status

Started: 06m 13s

Cancel

0K

_images/Node-status0.png
Welcome to PowerUP Press F1 for field help

PXE Boot
Start Time 05/12/2019 09:07:41 PM CDT
Finished 0/1

Detailed node installation status

Serial BMC MAC Address BMC IP Address

JWSBSW16200070 14:63:08: 0!

16:C2 192.168.76.22

Host IP Address

0S Info

Install Status

Cancel

0K

_images/simple-cluster.png
Mgt Switch
192.168.32 20

N [

[&] [o]

[o] [v]

Node 1

Node 2

Node 3

_static/ajax-loader.gif

_images/basic-cluster.png
Mgmt Switch
192.168.16.20

N[

)_

Fiﬂ

iPMI
Node 1
exe | (node-typet)

1PV

1ML
PXE
XE

P

BB [« & [«

Data Switch
192.168.16.25

]

18]

B O N e

_images/basic-ha-cluster.png
Mgmt Switch Data Switch

192.168.32.20 192.168.3225 12;:’63’;;?0
@ Bond pair
(LACP) MLAG / vPC

[e T

Node 1 =] I} M
[z | (node-typet) oy i) 2
[3]= Node 2) 12)
i (node-type2) =t un] |
E o Node 3 i unt] 5
6}=e (node-type2) it inCl} &l
sl (]
]

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

