
POWER-Up User Guide Documentation
Release 2.0

Ray Harrington

Oct 16, 2020

Contents:

1 Document Preface and Scope 3

2 Release Table 5

3 Introduction 7

4 Prerequisite Hardware Setup 11

5 Installing the POWER-Up Software 19

6 Creating the Config File 21

7 Running the POWER-Up Cluster Deployment Software 23

8 Running Operating System Install 31

9 Running the POWER-Up Software Installation Software 35

10 Creating Software Install Modules 37

11 Running the Watson Machine Learning (WML) Accelerator Software Install Module 39

12 Running the WMLA install module in an air-gapped environment 47

13 Cluster Configuration File Specification 49

14 Cluster Inventory File Specification 63

15 Multiple Tenant Support 67

16 Developer Guide 71

17 Building the Introspection Kernel and Filesystem 75

18 Appendix - A Using the ‘pup’ Program 77

19 Appendix - B WMLA Installation for Advanced Users 81

20 Appendix - D Example system 1 - Basic Flat Cluster 83

i

21 Appendix - E Example system 2 - Basic Cluster with High Availability Network 89

22 Appendix - F Detailed POWER-Up Flow (needs update) 97

23 Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox SX1410 99

24 Appendix - H Recovering from POWER-Up Issues (needs update) 101

25 Appendix - I Using the ‘teardown’ Program 103

26 Indices and tables 105

ii

POWER-Up User Guide Documentation, Release 2.0

Version 2.0

Date 2018-03-26

Document Owner OpenPOWER POWER-Up Team

Authors Irving Baysah, Rolf Brudeseth, Jay Carman, Ray Harrington, Hoa Ngo, Nilesh Shah

Contents: 1

POWER-Up User Guide Documentation, Release 2.0

2 Contents:

CHAPTER 1

Document Preface and Scope

This document is a User’s guide for the OpenPOWER POWER-Up toolkit. It is targeted at all users of the toolkit.
Users are expected to have a working knowledge of Linux and Ethernet networking.

1.1 Document Control

Upon initial publication, this document will be stored on Github

1.2 Revision History

0.9 11 Oct
2016

Beta release

1.0 24 Jan
2017

initial external release

1.0 4 Feb
2017

Fixes and updates

1.1 24 Feb
2017

Release 1.1 with LAG and MLAG support

1.2 14 Apr
2017

Release 1.2 with introspection and support for 4 ports and 2 bonds

1.3 26 Jun
2017

Release 1.3 Passive switch mode and improved introspection support.

1.4 22 Sep
2017

Release 1.4 Cisco passive mode support.

2.0b 7 Mar
2018

Release 2.0 New config file format and validation. Add hardware discovery and validation.
Add Cisco (NX-OS) switch support

Table 1: Revision History

3

POWER-Up User Guide Documentation, Release 2.0

1.3 Related Documentation

Document Name Location / Owner
Lenovo Application Guide For Net-
working OS 8.3

http://systemx.lenovofiles.com/help/topic/com.lenovo.rackswitch.g8052.
doc/G8052_AG_8-3.pdf

Mellanox MLNX-OS® User Manual
for Ethernet

See instructions for access at https://community.mellanox.com/docs/
DOC-2188

4 Chapter 1. Document Preface and Scope

http://systemx.lenovofiles.com/help/topic/com.lenovo.rackswitch.g8052.doc/G8052_AG_8-3.pdf
http://systemx.lenovofiles.com/help/topic/com.lenovo.rackswitch.g8052.doc/G8052_AG_8-3.pdf
https://community.mellanox.com/docs/DOC-2188
https://community.mellanox.com/docs/DOC-2188

CHAPTER 2

Release Table

Release Code Name Release Date End of Life Date
0.9 Antares 2016-10-24 2017-04-15
1.0 Betelgeuse 2017-01-25 2018-03-07
1.1 Castor 2017-02-24 2018-03-07
1.2 Denebola 2017-04-15 2018-03-07
1.3 Electra 2017-06-26 TBD
1.4 Fafnir 2017-06-26 TBD
2.0 Grumium 2018-03-26 TBD
2.1 Helvetios TBD TBD

5

POWER-Up User Guide Documentation, Release 2.0

6 Chapter 2. Release Table

CHAPTER 3

Introduction

The PowerUp suite of deployment software enables greatly simplified deployment and configuration of OpenPOWER
servers running Linux and installation of software to groups of servers. It leverages widely used open source tools
such as Cobbler, Ansible and Python. Because it relies solely on industry standard protocols such as IPMI and PXE
boot, hybrid clusters of OpenPOWER and x86 nodes can readily be supported.

PowerUp currently has three primary functional capabilities;

• Operating system installation (in beta)

• Software installation

• Bare metal deploy of openPOWER clusters

• Basic configuration of groups of nodes (under development)

3.1 Operating System Installation Overview

PowerUp uses a windowed text based user interface (TUI) to provide a user friendly, easy to use facility for quickly
deploying an OS to a group of similar nodes from a user provided ISO image file. Both Red Hat and Ubuntu are
supported. After entering the subnet information for the BMC and PXE networks and selecting the installation ISO
file, the PowerUp software scans the subnet for BMCs and displays a list of discovered nodes. Nodes are listed with
serial number, model and BMC MAC address. The user can select nodes from the list by simply scrolling through the
list, pressing the space bar to select the desired nodes and click on ‘OK’ to begin installation. A status screen shows
installation status.

3.2 Software Installation Overview

PowerUp’s software installer provides a framework for ‘pluggable’ software install modules which can be user created.
Python classes are provided to facilitate the creation of yum, conda and pypi simple repositories. The nginx web server
is used to serve software binaries and packages to the nodes being installed.

7

POWER-Up User Guide Documentation, Release 2.0

3.3 Node Configuration

Basic configuration of groups of similar nodes is under development. A simple to use TUI will allow setting of
hostnames, setup of network interfaces, basic firewall configuration and basic setup of network attached shared storage.
Ansible is used to handle configuration tasks across a cluster.

3.4 Cluster Deploymment Overview

PowerUp’s bare metal cluster deployment deploys a heterogeneous cluster of compute nodes and Ethernet switches
across one or more racks. PowerUp can configure simple flat networks for typical HPC environments or more advanced
networks with VLANS and bridges for OpenStack environments. Complex heterogeneous clusters can be easily
deployed using PowerUp’s interface and node templates. PowerUp configures the switches in the cluster with support
for multiple switch vendors.

Cluster PowerUp is designed to be easy to use. If you are implementing one of the supported architectures with
supported hardware, it eliminates the need for custom scripts or programming. It does this via a text configuration file
(config.yml) which drives the cluster configuration. The configuration file is a YAML text file which the user edits.
Several example config files are included docs directory. The configuration process is driven from a “deployer” node
which can be removed from the cluster when finished. The PowerUp process is as follows;

1. Rack and cable the hardware.

2. Initialize hardware.

• initialize switches with static IP address, userid and password.

• insure that all cluster compute nodes are set to obtain a DHCP address on their BMC ports and they are
configured to support PXE boot on one of their network adapters.

3. Install the Cluster PowerUp software on the deployer node.

4. Edit an existing config.yml file to drive the configuration.

5. Run the PowerUp software

When finished, Cluster PowerUp generates a YAML formatted inventory file with detailed information about your
cluster nodes. This file can be read by operational management software and used to seed configuration files needed
for installing a solution software stack.

3.4.1 Hardware and Architecture Overview

The PowerUp software supports clusters of servers interconnected with Ethernet. The servers must support IPMI
and PXE boot. Multiple racks can be configured with traditional two tier access-aggregation networking. PowerUp
configures both a management and data network. In simple / cost sensitive setups, the management and data networks
can be configured on the same physical switch. Power-Up can configure VLANs and bonded networks with as many
ports as the hardware supports. Redundant data switches (ie MLAG) are also supported. (Currently only implemented
on Mellanox switches.)

3.4.2 Networking

Cluster PowerUp provides basic layer 2 configuration of Cisco, Mellanox and Lenovo switches. Not all functionality
is enabled on all switch types. Currently redundant networking (MLAG) is only implemented on Mellanox switches.
Port channel support is only implemented on Cisco (NX-OS) and Mellanox switches. PowerUp can configure any

8 Chapter 3. Introduction

POWER-Up User Guide Documentation, Release 2.0

number of node interfaces on cluster nodes. To facilitate installation of higher level software, network interfaces can
be optionally renamed.

Interface templates are used to define network configurations in the config.yml file. These can be physical ports,
bonded ports, Linux bridges or VLANS. Interface templates can be entered using Ubuntu or Red Hat network config-
uration syntax. Once defined, interface templates can be applied to any node template. Node interfaces can optionally
be configured with static IP addresses. These can be assigned sequentially or from a list.

3.4.3 Compute Nodes

Cluster PowerUp supports clusters of heterogeneous compute nodes. Users can define any number of node types by
creating templates in a config file. Node templates can include any network templates defined in the network templates
section. The combination of node templates and network templates allows great flexibility in building heterogeneous
clusters with nodes dedicated to specific purposes.

3.4.4 Supported Hardware

Compute Nodes

OpenPOWER Compute Nodes;

• S812LC

• S821LC

• S822LC (Minsky)

• SuperMicro OpenPOWER servers

x86 Compute Nodes;

• Lenovo x3550

• Lenovo x3650

Many other x86 nodes should work, but we have only tested with Lenovo and some Supermicro nodes.

Switches

For information on adding additional switch support using PowerUp’s switch class API, (see Developer Guide)

Supported Switches;

• Mellanox SX1410

• Mellanox SX1710

• Cisco 5K (FEXes supported)

• Lenovo G8052, G7028, G7052 (bonding not currently supported)

Note Other Mellanox switches may work but have not been tested Lenovo G8264 has not been tested Other Cisco
NX-OS based switches may work but have not been tested

3.4. Cluster Deploymment Overview 9

POWER-Up User Guide Documentation, Release 2.0

10 Chapter 3. Introduction

CHAPTER 4

Prerequisite Hardware Setup

4.1 Setting up the Deployer Node

It is recommended that the deployer node have at least one available core of a XEON class processor, 16 GB of
memory free and 64 GB available disk space. When using the POWER-Up software installation capabilities, it is
recommended that 100 GB of disk space be available and that there be at least 40 GB of free disk space in the partition
holding the /srv directory. For larger clusters, additional cores, memory and disk space are recommended. A 4 core
XEON class processor with 32 GB memory and 320 GB disk space is generally adequate for clusters up to several
racks.

The deployer node requires internet access for setup and installation of the POWER-UP software and may need
internet access for creation of any repositories needed for software installation. This can be achieved through the
interface used for connection to the management switch (assuming the management switch has a connection to the
internet) or through another interface. Internet access requirements for software installation depends on the software
installation module. Internet access is required when running cluster deployments.

4.1.1 Operating Sytem and Package setup of the Deployer Node

• Deployer OS Requirements:

– Ubuntu (Software installation is not yet supported under Ubuntu)

* Release 14.04LTS or 16.04LTS

* sudo privileges

– RHEL (Software installation is supported with POWER-Up vs 2.1. Cluster deployment is not yet supported under RHEL)

* Release 7.2 or later

* Extra Packages for Enterprise Linux (EPEL) repository enabled (https://fedoraproject.org/wiki/
EPEL)

* sudo privileges

11

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

POWER-Up User Guide Documentation, Release 2.0

* Enable Red Hat ‘optional’ and ‘extra’ repository channels or enable the repository on the RHEL installation iso if available. (https://access.redhat.com/solutions/1355683) (required only if using the POWER-Up software installer)

· Power8:

$ sudo subscription-manager repos –enable=rhel-7-for-power-le-optional-rpms

$ sudo subscription-manager repos –enable=rhel-7-for-power-le-extras-rpms

· Power9:

$ sudo subscription-manager repos –enable=rhel-7-for-power-9-optional-rpms

$ sudo subscription-manager repos –enable=rhel-7-for-power-9-extras-rpms

• Optional:

– Assign a static, public ip address to the BMC port to allow external control of the deployer node.

– Enable ssh login

4.1.2 Network Configuration of the Deployer Node

For Software Installation

Use of the POWER-Up software installer requires that an interface on the installer node be pre-configured with access
to the cluster nodes. If the cluster was not deployed by POWER-Up, this needs to be done manually. If the cluster
has been deployed by POWER-Up, the PXE network will be automatically configured and can be used for software
installation.

Although a routed connection to the cluster can be used for software installs, It is preferable that the interface used
have an IP address in the subnet of the cluster network to be used for installation.

For Bare Metal Deployments

For bare metal deployments the deployer port connected to the management switch must be defined in
/etc/network/interfaces (Ubuntu) or the ifcfg-eth# file (RedHat). e.g.:

auto eth0 # example device name
iface eth0 inet manual

POWER-Up can set up a subnet and optionally a vlan for it’s access to the switches in the cluster. It is recommended
that the deployer be provided with a direct connection to the management switch to simplify the overall setup. If this
is not possible, the end user must insure that tagged vlan packets can be communicated between the deployer and the
switches in the cluster. The interface used for PXE and IPMI can have additional IP addresses on it, but they should
not be in the PXE or IPMI subnet. Similarly, this interface can have existing tagged vlans configured on it, but they
should not be the vlans to be used by the PXE and IPMI networks.

An example of the config file parameters used to configure initial access to the switches is given above with POWER-
Up setup of the switch management network. For a detailed description of these keys see deployer ‘mgmt’ networks,
‘switches: mgmt:’ and ‘switches: data:’ in the Cluster Configuration File Specification.

4.2 Hardware initialization

• Insure the cluster is cabled according to build instructions and that a list of all switch port to node physical
interface connections is available and verified. Note that every node must have a physical connection from both
BMC and PXE ports to a management switch. (see the example cluster in Appendix-D)

12 Chapter 4. Prerequisite Hardware Setup

https://access.redhat.com/solutions/1355683

POWER-Up User Guide Documentation, Release 2.0

• Cable the deployer node directly to a management switch. For large cluster deployments, a 10 Gb connection
is recommended. The deployer node must have access to the public internet (or site) network for retrieving
software and operating system image files. If the cluster management network does not have external access an
alternate connection must be provided, such as the cluster data network.

• Insure that the BMC ports of all cluster nodes are configured to obtain an IP address via DHCP.

• If this is a first time OS install, insure that all PXE ports are configured to obtain an IP address via DHCP. On
OpenPOWER servers this is typically done using the Petitboot menus, e.g.:

Petitboot System Configuration

Boot Order (0) Any Network device
(1) Any Device:

[Add Device:]
[Clear & Boot Any]
[Clear]

Timeout: 10 seconds

Network: (*) DHCP on all active interfaces
() DHCP on a specific interface
() Static IP configuration

• Acquire any needed public and or site network addresses.

• Insure you have a config.yml file to drive the cluster configuration. If necessary, edit / create the config.yml file
(see section Creating the Config File)

Configuring the Cluster Switches

POWER-Up can configure supported switch models (See Supported Hardware). If automated switch configuration is
not desired ‘passive’ switch mode can be used with any switch model (See Preparing for Passive Mode)

Initial configuration of cluster switch(es)

In order to configure your cluster switches, Cluster POWER-Up needs management access to all your cluster switches.
This management network can be vlan isolated but for most applications a non-isolated management network is suit-
able and simpler to setup. To prepare for a non-isolated management network, you need to create management in-
terfaces on all your cluster switches. The IP addresses for these management interfaces all need to be in the same
subnet. The deployer will also need an IP address in this subnet. You will also need to know a userid and password
for each switch and each switch will need to be enabled for SSH access. One of the management switches in your
cluster must have a data port accessible to the deployer. This can be a routed connection supporting tagged vlans, but
it is recommended that there be a direct connection between the deployer and one management switch.

For out of box installation, it is usually easiest to configure switches using a serial connection. Alternately, if the switch
has a connection to a network without a DHCP server running, you may be able to access the switch at a default IP
address. If the switch has a connection to a network with a DHCP server running, you may be able to reach it at the
assigned IP address. See the switches installation guide. For additional info on Lenovo G8052 specific commands,
see Appendix-G and the Lenovo RackSwitch G8052 Installation guide).

In this simple cluster example, the management switch has an in-band management interface. The initial setup requires
a management interface on all switches configured to be accessible by the deployer node. The configured ip address
must be provided in the ‘interfaces:’ list within each ‘switches: mgmt:’ and ‘switches: data:’ item. Cluster POWER-
Up uses this address along with the provided userid and password credentials to access the management switch. Any
additional switch ‘interfaces’ will be configured automatically along with deployer ‘mgmt’ networks.

4.2. Hardware initialization 13

POWER-Up User Guide Documentation, Release 2.0

Fig. 1: POWER-Up setup of the switch management network

The following snippets are example config.yml entries for the diagram above:

• Switch config file definition:

switches:
mgmt:

- label: mgmt_switch
userid: admin
password: abc123
class: lenovo
interfaces:

- type: inband
ipaddr: 192.168.32.20

links:
- target: deployer
ports: 46

• Deployer ‘mgmt’ networks:

deployer:
networks:

mgmt:
- device: enp1s0f0
interface_ipaddr: 192.168.32.95
netmask: 255.255.255.0

Note that the deployer mgmt interface_ipaddress is in the same subnet as the management switches ipaddr.
(192.168.32.0 netmask: 255.255.255.0)

As an example, management switch setup commands for the Lenovo G8052 are given below. For other supported
switches consult the switch documentation.

14 Chapter 4. Prerequisite Hardware Setup

POWER-Up User Guide Documentation, Release 2.0

• Enable configuration of the management switch:

enable
configure terminal

• Enable IP interface mode for the management interface:

RS G8052(config)# interface ip 1

• assign a static ip address, netmask and gateway address to the management interface. This must match one of
the switch ‘interfaces’ items specified in the config.yml ‘switches: mgmt:’ list:

RS G8052(config-ip-if)# ip address 192.168.32.20 # example IP address
RS G8052(config-ip-if)# ip netmask 255.255.255.0
RS G8052(config-ip-if)# vlan 1 # default vlan 1 if not specified
RS G8052(config-ip-if)# enable
RS G8052(config-ip-if)# exit

• admin password. This must match the password specified in the config.yml corresponding ‘switches: mgmt:’
list item. The following command is interactive:

access user administrator-password

• disable spanning tree:

spanning-tree mode disable

• enable secure https and SSH login:

ssh enable
ssh generate-host-key
access https enable

• Save the config. For additional information, consult vendor documentation):

copy running-config startup-config

Adding additional management and data switch(es)

For out of box installation, it is usually necessary to configure the switch using a serial connection. See the switch
installation guide. As an example, for Mellanox switches, a configuration wizard can be used for initial configuration:

• assign hostname

• set DHCP to no for management interfaces

• set zeroconf on mgmt0 interface: to no

• do not enable ipv6 on management interfaces

• assign static ip address. This must match the corresponding interface ‘ipaddr’ specified in the config.yml file
‘switches: data:’ list, and be in a deployer ‘mgmt’ network.

• assign netmask. This must match the netmask of the deployer ‘mgmt’ network that will be used to access the
management port of the switch.

• default gateway

• Primary DNS server

• Domain name

4.2. Hardware initialization 15

POWER-Up User Guide Documentation, Release 2.0

• Set Enable ipv6 to no

• admin password. This must match the password specified in the config.yml corresponding ‘switches: data:’ list
item.

• disable spanning tree. Typical industry standard commands:

enable
configure terminal
no spanning-tree

• enable SSH login:

ssh server enable

• Save config. In switch config mode:

configuration write

• If using redundant data switches with MLAG or vPC, connect only a single inter switch peer link (IPL) between
switches or leave the IPL links disconnected until Cluster POWER-Up completes. (This avoids loops)

• Add the additional switches to the config.yml. A data switch is added as shown below:

– Switch config file definition:

switches:
.
.
data:

- label: data_switch
userid: admin
password: abc123
class: cisco
interfaces:

- type: inband
ipaddr: 192.168.32.25

links:
- target: mgmt_switch
ports: mgmt

This completes normal POWER-Up initial configuration. For additional information and examples on preparing cluster
hardware, see the sample configurations in the appendices.

Preparing for Passive Mode

In passive mode, POWER-Up configures the cluster compute nodes without requiring any management communica-
tion with the cluster switches. This facilitates the use of POWER-Up even when the switch hardware is not supported
or in cases where the end user does not allow 3rd party access to their switches. When running POWER-Up in passive
mode, the user is responsible for configuring the cluster switches. The user must also provide the Cluster POWER-Up
software with MAC address tables collected from the cluster switches during the POWER-Up process. For passive
mode, the cluster management switch must be fully programmed before beginning cluster POWER-Up, while the data
switch should be configured after POWER-Up runs.

Configuring the management switch(es)

• The port(s) connected to the deployer node must be put in trunk mode with allowed vlans associated with each
respective device as defined in the deployer ‘mgmt’ and ‘client’ networks.

16 Chapter 4. Prerequisite Hardware Setup

POWER-Up User Guide Documentation, Release 2.0

• The ports on the management switch which connect to cluster node BMC ports or PXE interfaces must be in
access mode and have their PVID (Native VLAN) set to the respective ‘type: ipmi’ and ‘type: pxe’ ‘vlan’ values
set in the ‘deployer client networks’.

Configuring the data switch(es)

Configuration of the data switches is dependent on the user requirements. The user / installer is responsible for all
configuration. Generally, configuration of the data switches should occur after Cluster POWER-Up completes. In
particular, note that it is not usually possible to acquire complete MAC address information once vPC (AKA MLAG
or VLAG) has been configured on the data switches.

4.2. Hardware initialization 17

POWER-Up User Guide Documentation, Release 2.0

18 Chapter 4. Prerequisite Hardware Setup

CHAPTER 5

Installing the POWER-Up Software

1. Verify that all the steps in Setting up the Deployer Node have been executed.

2. Login to the deployer node.

3. Install git

• Ubuntu:

$ sudo apt-get install git

• RHEL:

$ sudo yum install git

4. From your home directory, clone POWER-Up:

$ git clone https://github.com/ibm/power-up

5. Install the remaining software packages used by Power-Up and setup the environment:

$ cd power-up
$./scripts/install.sh

(this will take a few minutes to complete)

$ source scripts/setup-env

NOTE: The setup-env script will ask for permission to add lines to your .bashrc file which modify the PATH
environment variable. It is recommended that you allow this so that the POWER-Up environment is restored if
you need to re-open the window or open and additional window.

19

POWER-Up User Guide Documentation, Release 2.0

20 Chapter 5. Installing the POWER-Up Software

CHAPTER 6

Creating the Config File

The config file drives the creation of the cluster. It is in YAML format which is stored as readable text. The lines must
be terminated with a newline character (\n). When creating or editing the file on the Microsoft Windows platform be
sure to use an editor, such as LibreOffice, which supports saving text files with the newline terminating character or
use dos2unix to convert the windows text file to unix format.

Sample config files can be found in the power-up/sample-configs directory. Once a config file has been created, rename
it to config.yml and move it to the project root directory. YAML files support data structures such as lists, dictionaries
and scalars. The Cluster Configuration File Specification describes the various fields.

See Cluster Configuration File Specification.

YAML files use spaces as part of its syntax. For example, elements of the same list must have the exact same number
of spaces preceding them. When editing the config file pay careful attention to spaces at the start of lines. Incorrect
spacing can result in failure to parse the file.

Schema and logic validation of the config file can be performed with the pup.py command:

$ cd power-up
$ source pup-venv/bin/activate
$./scripts/python/pup.py validate --config-file

6.1 Switch Mode

6.1.1 Active Switch Mode

This mode allows the switches to be automatically configured during deployment.

6.1.2 Passive Switch Mode

This mode requires the user to manually configure the switches and to write switch MAC address tables to file.

21

POWER-Up User Guide Documentation, Release 2.0

Passive management switch mode and passive data switch mode can be configured independently, but passive and
active switches of the same classification cannot be mixed (i.e. all data switches must either be active or passive).

See Config Specification - Globals Section.

Passive Management Switch Mode:

Passive management switch mode requires the user to configure the management switch before initiating a deploy.
The client network must be isolated from any outside servers. IPMI commands will be issued to any system BMC that
is set to DHCP and has access to the client network.

Passive Data Switch Mode:

Passive data switch mode requires the user to configure the data switch in accordance with the defined networks. The
node interfaces of the cluster will still be configured.

6.2 Networks

The network template section defines the networks or groups of networks and will be referenced by the Node Template
members.

See Config Specification - Networks Section.

6.3 Node Templates

The order of the individual ports under the ports list is important since the index represents a node and is referenced
in the list elements under the pxe and data keys.

See Config Specification - Node Templates Section.

6.3.1 Renaming Interfaces

The rename key provides the ability to rename ethernet interfaces. This allows the use of heterogeneous nodes with
software stacks that need consistent interface names across all nodes. It is not necessary to know the existing interface
name. The cluster configuration code will find the MAC address of the interface cabled to the specified switch port
and change it accordingly.

6.3.2 Install Device

The install_device key is the disk to which the operating system will be installed. Specifying this disk is not always
obvious because Linux naming is inconsistent between boot and final OS install. For OpenPOWER S812LC, the two
drives in the rear of the unit are typically used for OS install. These drives should normally be specified as /dev/sdj
and /dev/sdk.

6.4 Post POWER-Up Activities

Once deployment has completed it is possible to launch additional commands or scripts specified in the Software Boot-
strap section. These can perform configuration actions or bootstrap install of additional software packages. Commands
can be specified to run on all cluster nodes or only specific nodes determined by the compute template name.

See Config Specification - Software Bootstrap Section.

22 Chapter 6. Creating the Config File

CHAPTER 7

Running the POWER-Up Cluster Deployment Software

7.1 Installing and Running the POWER-Up code. Step by Step In-
structions

1. Verify that all the steps in section 4 Prerequisite Hardware Setup have been executed. POWER-Up can not run
if addresses have not been configured on the cluster switches and recorded in the config.yml file.

2. Login to the deployer node.

3. Install git

• Ubuntu:

$ sudo apt-get install git

• RHEL:

$ sudo yum install git

4. From your home directory, clone POWER-Up:

$ git clone https://github.com/ibm/power-up

5. Install the remaining software packages used by Power-Up and setup the environment:

$ cd power-up
$./scripts/install.sh

(this will take a few minutes to complete)

$ source scripts/setup-env

NOTE: The setup-env script will ask for permission to add lines to your .bashrc file. It is recommended that
you allow this so that the POWER-Up environment is restored if you open a new window. These lines can be
removed using the “teardown” script.

23

POWER-Up User Guide Documentation, Release 2.0

6. If introspection is enabled then follow the instructions in Building Necessary Config Files to set the
‘IS_BUILDROOT_CONFIG’ and ‘IS_KERNEL_CONFIG’ environment variables. (Introspection NOT YET
ENABLED for POWER-Up 2.0)

7. Copy your config.yml file to the ~/power-up directory (see section 4 Creating the config.yml File for how to
create the config.yml file)

8. Copy any needed os image files (iso format) to the ‘~/power-up/os-images’ directory. Symbolic links to image
files are also allowed.

NOTE: Before beginning the next step, be sure all BMCs are configured to obtain a DHCP address then reset
(reboot) all BMC interfaces of your cluster nodes. As the BMCs reset, the POWER-Up DHCP server will assign
new addresses to them.

One of the following options can be used to reset the BMC interfaces;

• Cycle power to the cluster nodes. BMC ports should boot and wait to obtain an IP address from the
deployer node.

• Use ipmitool run as root local to each node; ipmitool bmc reset warm OR ipmitool mc reset warm de-
pending on server

• Use ipmitool remotely such as from the deployer node. (this assumes a known ip address already exists
on the BMC interface):

ipmitool -I lanplus -U <username> -P <password> -H <bmc ip address> mc reset
→˓cold

If necessary, use one of the following options to configure the BMC port to use DHCP;

• From a local console, reboot the system from the host OS, use the UEFI/BIOS setup menu to configure
the BMC network configuration to DHCP, save and exit.

• use IPMItool to configure BMC network for DHCP and reboot the BMC

9. Copy your config.yml file to the ~/power-up directory.

10. To validate your config file:

$ pup validate --config-file

Note: Most of POWER-Up’s capabilities are accessed using the ‘pup’ program. For a complete overview
of the pup program, see Appendix-A.

11. To deploy operating systems to your cluster nodes:

$ pup deploy

Note: If running with passive management switch(es) follow special instructions in Passive Switch Mode Special
Instructions instead. (NOTE: passive management switches are not yet supported in POWER-Up 2.0)

12. This will create the management networks, install the container that runs most of the POWER-Up functions and
then optionally launch the introspection OS and then install OS’s on the cluster nodes. This process can take
as little as 40 minutes or as much as multiple hours depending on the size of the cluster, the capabilities of the
deployer and the complexity of the deployment.

• To monitor progress of the deployment, open an additional terminal session into the deployment node and
run the pup program with a status request. (Running POWER-Up utility functions in another terminal
window will not work if you did not allow POWER-Up to make updates to your .bashrc file):

$ pup util --status (NOT yet implemented in POWER-Up 2.0)

24 Chapter 7. Running the POWER-Up Cluster Deployment Software

Build-Introspection.rst#building-necessary-config-files

POWER-Up User Guide Documentation, Release 2.0

After a few minutes POWER-Up will have initialized and will start discovering and validating your cluster
hardware. During discovery and validation, POWER-Up will first verify that it can communicate with all of the
switches defined in the config file. Next it will create a DHCP server attached to the IPMI network and wait
for all of the cluster nodes defined in the config file to request a DHCP address. After several minutes, a list of
responding nodes will be displayed. (display order will match the config file order). If there are missing nodes,
POWER-Up will pause so that you can take corrective actions. You will then be given the option to continue
discovering the nodes or to continue on. POWER-Up will also verify that all nodes respond to IPMI commands.
Next, POWER-Up will verify that all cluster nodes are configured to request PXE boot. POWER-Up will set
the boot device to PXE on all discovered nodes, cycle power and then wait for them to request PXE boot. Note
that POWER-Up will not initiate PXE boot at this time, it is only verifying that all the nodes are configured
to request PXE boot. After several minutes all nodes requesting PXE boot will be listed (again in the same
order that they are entered in the config file) POWER-Up will again pause to give you an opportunity to make
any necessary corrections or fixes. You can also choose to have POWER-Up re-cycle power to nodes that have
not yet requested PXE boot. For nodes that are missing, verify cabling and verify the config.yml file. See
“Recovering from POWER-Up Issues” in the appendices for additional debug help. You can check which nodes
have obtained IP addresses, on their BMC’s and or PXE ports by executing the following from another window:

$ pup util --scan-ipmi (not yet implemented in POWER-Up 2.0)
$ pup util --scan-pxe (not yet implemented in POWER-Up 2.0)

NOTES: The DHCP addresses issued by POWER-Up during discovery and validation have a short 5 minute
lease and POWER-Up dismantles the DHCP servers after validation. You will lose the ability to scan these
networks within a few minutes after validation ends. After deploy completes, you will again be able to scan
these networks.

Note that cluster validation can be re-run as often as needed. Note that if cluster validation is run after deploy,
the cluster nodes will be power cycled which will of course interrupt any running work.

After discovery and validation complete, POWER-Up will create a container for the POWER-Up deployment
software to run in. Next it installs the deployment software and operating system images in the container and
then begins the process of installing operating systems to the cluster nodes. Operating system install happens in
parallel and overall install time is relatively independent of the number of nodes up to tens of nodes.

13. Introspection (NOT yet enabled in POWER-Up 2.0)

If introspection is enabled then all client systems will be booted into the in-memory OS with ssh enabled. One
of the last tasks of this phase of POWER-Up will print a table of all introspection hosts, including their IP
addresses and login / ssh private key credentials. This list is maintained in the ‘power-up/playbooks/hosts’ file
under the ‘introspections’ group. POWER-Up will pause after the introspection OS deployment to allow for
customized updates to the cluster nodes. Use ssh (future: or Ansible) to run custom scripts on the client nodes.

14. To continue the POWER-Up process after introspection, press enter.

Again, you can monitor the progress of operating system installation from an additional terminal window:

$ pup util --status

It will usually take several minutes for all the nodes to load their OS. If any nodes do not appear in the cobbler
status, see “Recovering from POWER-Up Issues” in the Appendices

POWER-Up creates logs of it’s activities. A file (gen) external to the POWER-Up container is written in the
power-up/log directory.

An additional log file is created within the deployer container. This log file can be viewed:

$ pup util --log-container (NOT yet implemented in POWER-Up 2.0)

Configuring networks on the cluster nodes

7.1. Installing and Running the POWER-Up code. Step by Step Instructions 25

POWER-Up User Guide Documentation, Release 2.0

Note: If running with passive data switch(es) follow special instructions in post-deploy-passive instead.

After completion of OS installation, POWER-Up will pause and wait for user input before continuing. You can press
enter to continue on with cluster node and data switch configuration or stop the POWER-Up process. After stopping,
you can readily continue the node and switch configuration by entering:

$ pup post-deploy

During post-deploy, POWER-Up performs several additional activities such as setting up networking on the cluster
nodes, setting up SSH keys and copying them to cluster nodes, and configures the data switches.

If data switches are configured with MLAG verify that;

• Only one IPL link is connected. (Connecting multiple IPL links before configuration can cause loop problems)

• No ports used by you cluster nodes are configured in port channels. (If ports are configured in port channels,
MAC addresses can not be acquired, which will prevent network configuration)

7.2 Passive Switch Mode Special Instructions

Deploying operating systems to your cluster nodes with passive management switches

When prompted, it is advisable to clear the mac address table on the management switch(es).

When prompted, write each switch MAC address table to file in the ‘power-up/passive’ directory. The files should
be named to match the unique switch label values set in the ‘config.yml’ ‘switches:’ dictionary. For example, for the
following management switch definitions:

switches:
mgmt:

- label: passive_mgmt_1
userid: admin
password: abc123
interfaces:
:
:
:

mgmt:
- label: passive_mgmt_2
userid: admin
password: abc123
interfaces:

The user would need to write two files:

1. ‘power-up/passive/passive_mgmt_1’

2. ‘power-up/passive/passive_mgmt_2’

If the user has ssh access to the switch management interface, writing the MAC address table to file can be readily
accomplished by redirecting stdout. Here is an example of the syntax for a Lenovo G8052:

$ ssh <mgmt_switch_user>@<mgmt_switch_ip> \
'show mac-address-table' > ~/power-up/passive/passive_mgmt_1

Note that this command would need to be run for each individual mgmt switch, writing to a separate file for each. It
is recommended to verify each file has a complete table for the appropriate interface configuration and only one mac
address entry per interface.

26 Chapter 7. Running the POWER-Up Cluster Deployment Software

POWER-Up User Guide Documentation, Release 2.0

See MAC address table file formatting rules below.

After writing MAC address tables to file press enter to continue with OS installation. Resume normal instructions.

If deploy-passive fails due to incomplete MAC address table(s) use the following command to reset all servers (power
off / set bootdev pxe / power on) and attempt to collect MAC address table(s) again when prompted:

$ pup util --cycle-power-pxe (NOT yet implemented)

Configuring networks on the cluster nodes with passive data switches

When prompted, it is advisable to clear the mac address table on the data switch(es). This step can be skipped if the
operating systems have just been installed on the cluster nodes and the mac address timeout on the switches is short
enough to insure that no mac addresses remain for the data switch ports connected to cluster nodes. If in doubt, check
the acquired mac address file (see below) to insure that each data port for your cluster has only a single mac address
entry.:

$ pup post-deploy

When prompted, write each switch MAC address table to file in ‘power-up/passive’. The files should be named to
match the unique label values set in the ‘config.yml’ ‘switches:’ dictionary. For example, take the following data
switch definitions:

switches:
:
:

data:
- label: passive1
class: cisco
userid: admin
password: passw0rd

:
:

- label: passive2
class: cisco
userid: admin
password: passw0rd

:
:

- label: passive3
class: cisco
userid: admin
password: passw0rd

The user would need to write three files:

1. ‘~/power-up/passive/passive1’

2. ‘~/power-up/passive/passive2’

3. ‘~/power-up/passive/passive3’

If the user has ssh access to the switch management interface writing the MAC address table to file can easily be
accomplished by redirecting stdout. Here is an example of the syntax for a Mellanox SX1400 / SX1710:

$ ssh <data_switch_user>@<data_switch_ip> \
'cli en "conf t" "show mac-address-table"' > ~/power-up/passive/passive1

For a Cisco NX-OS based switch:

7.2. Passive Switch Mode Special Instructions 27

POWER-Up User Guide Documentation, Release 2.0

$ ssh <data_switch_user>@<data_switch_ip> \
'conf t ; show mac address-table' > ~/power-up/passive/passive1

Note that this command would need to be run for each individual data switch, writing to a separate file for each. It
is recommended to verify each file has a complete table for the appropriate interface configuration and only one mac
address entry per interface.

See MAC address table file formatting rules below.

MAC Address Table Formatting Rules

Each file must be formatted according to the following rules:

• MAC addresses and ports are listed in a tabular format.

– Columns can be in any order

– Additional columns (e.g. vlan) are OK as long as a header is provided.

• If a header is provided and it includes the strings “mac address” and “port” (case insensitive) it will be used
to identify column positions. Column headers must be delimited by at least two spaces. Single spaces will be
considered a continuation of a single column header (e.g. “mac address” is one column, but “mac address vlan”
would be two).

• If a header is provided, it must include a separator row consisting of dashes ‘-‘ to delineate columns. One or
more spaces or plus symbols ‘+’ are to be used to separate columns.

• If a header is not provided then only MAC address and Port columns are allowed.

• MAC addresses are written as (case-insensitive):

– Six pairs of hex digits delimited by colons (:) [e.g. 01:23:45:67:89:ab]

– Six pairs of hex digits delimited by hyphens (-) [e.g. 01-23-45-67-89-ab]

– Three quads of hex digits delimited by periods (.) [e.g. 0123.4567.89ab]

• Ports are written either as:

– An integer

– A string starting with ‘Eth1/’ followed by one or more numeric digits without white space. (e.g.
“Eth1/25” will be saved as “25”)

– A string starting with ‘Eth’ and containing multiple numbers separated by “/”. The ‘Eth’ portion of
the string will be removed) removed. (e.g. “Eth100/1/5” will be saved as “100/1/5”).

Cisco, Lenovo and Mellanox switches currently supported by POWER-Up follow these rules. An example of a user
generated “generic” file would be:

mac address Port
----------------- ----
0c:c4:7a:20:0d:22 38
0c:c4:7a:76:b0:9b 19
0c:c4:7a:76:b1:16 9
0c:c4:7a:76:c8:ec 37
40:f2:e9:23:82:ba 18
40:f2:e9:23:82:be 17
40:f2:e9:24:96:5a 22
40:f2:e9:24:96:5e 21
5c:f3:fc:31:05:f0 13
5c:f3:fc:31:06:2a 12
5c:f3:fc:31:06:2c 11

(continues on next page)

28 Chapter 7. Running the POWER-Up Cluster Deployment Software

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

5c:f3:fc:31:06:ea 16
5c:f3:fc:31:06:ec 15
6c:ae:8b:69:22:24 2
70:e2:84:14:02:92 5
70:e2:84:14:0f:57 1

7.3 SSH Keys

The OpenPOWER POWER-Up Software will generate a passphrase-less SSH key pair which is distributed to each
node in the cluster in the /root/.ssh directory. The public key is written to the authorized_keys file in the /root/.ssh
directory and also to the /home/userid-default/.ssh directory. This key pair can be used for gaining passwordless root
login to the cluster nodes or passwordless access to the userid-default. On the deployer node, the key pair is written to
the ~/.ssh directory as gen and gen.pub. To login to one of the cluster nodes as root from the deployer node:

ssh -i ~/.ssh/gen root@a.b.c.d

As root, you can log into any node in the cluster from any other node in the cluster as:

ssh root@a.b.c.d

Where a.b.c.d is the IP address of the port used for pxe install. These addresses are stored under the key name ipv4-pxe
in the inventory file. The inventory file is stored on every node in the cluster at /var/oprc/inventory.yml. The inventory
file is also stored on the deployer in the deployer container in the /opt/power-up directory. A symbolic link to this
inventory file is created in the ~/power-up directory as ‘inventorynn.yml’, where nn is the number of the pxe vlan.

Note that you can also log into any node in the cluster using the credentials specified in the config.yml file (key names
userid-default and password-default)

7.3. SSH Keys 29

POWER-Up User Guide Documentation, Release 2.0

30 Chapter 7. Running the POWER-Up Cluster Deployment Software

CHAPTER 8

Running Operating System Install

The PowerUp Operating system installer is a simple to use windowed (TUI) interface that provides rapid deployment
of operating systems to similar nodes. Power8 and Power9 OpenPOWER nodes including those with OpenBMC are
supported. Because the installer uses industry standard PXE protocols, it is expected to work with most x86 nodes
which support PXE boot.

The OS installer is invoked from the command line;

pup osinstall {profile.yml}

The process takes just three easy steps

1. Enter network subnet info and select the interface to use.

2. Enter BMC access info, choose an ISO image, Scan the BMC network subnet and select the nodes to install.

3. Install. A status screen shows the progress of nodes being installed.

8.1 Network Interface Setup

The network interface setup window

At a minimum, you need to select a network interface on the PowerUp install node to be used for communicating with
the nodes to be installed. You can accept the default private subnets or enter in your own subnet addresses and subnet
masks.

Note that you can obtain help on any entry field by pressing F1 while in that field. Some fields such as the interface
selection fields are intelligent and may change or autofill based on other fields. For instance the interface selection
fields will autofill the interface if the there is an interface on the install node with a route matching the entered subnet
and mask. If it does not autofill, press enter and select an interface from the available ‘up’ physical interfaces. You
can use the same interface for accessing the BMCs and PXE ports or different interfaces. If needed, PowerUp will add
addresses and create tag’ed interfaces on the install node. Network changes are temporary and will not survive reboots
or network restarts.

31

POWER-Up User Guide Documentation, Release 2.0

Fig. 1: Network interface setup

8.2 Node Selection

The Node Selection window

At a minimum, you need to enter access credentials for the target nodes BMCs and select an ISO image file. All
nodes being deployed must have the same userid and password. Press enter in the ISO image file field to open a file
browser/selection window. Move to the ‘scan for nodes’ button and press enter to scan the BMC subnet for nodes.
After several seconds the nodes scan should complete. Scroll through the list of nodes and press enter to select nodes
to install. When done, press ‘OK’ to begin OS installation.

8.3 Installation Status

The Node Installation Status window

After a minute or so, the selected nodes will be set to PXE boot and a reboot will begin. An installation status
window will open. The nodes will be listed but status will not begin updating until they have rebooted and started the
installation process which typically takes a couple of additional minutes. Once the nodes start to install, the status will
show started and an elapsed time will appear. Once installation completes, the status will change to ‘Finished’ and a
final time stamp will be posted. At this points the nodes are rebooted a second time. After the second reboot, the nodes
should be accessible at the host ip address in the status window and the user credentials in the kickstart or preseed file.

32 Chapter 8. Running Operating System Install

POWER-Up User Guide Documentation, Release 2.0

Fig. 2: Node Selection

Fig. 3: Node installation status

8.3. Installation Status 33

POWER-Up User Guide Documentation, Release 2.0

Fig. 4: Node installation started status

34 Chapter 8. Running Operating System Install

CHAPTER 9

Running the POWER-Up Software Installation Software

Under development. This functionality is not yet supported in the master branch of POWER-Up. Development
of this function is in the dev-software-install branch.

• Verify that all the steps in Installing the POWER-Up Software have been executed.

• Copy or download the software install module to be used to the power-up/software directory. POWER-Up
currently ships with the installer module for PowerAI Enterprise vs 5.2. (paie52). See Running the Watson
Machine Learning (WML) Accelerator Software Install Module

• Consult the README for the specific software install module for the names of any tar files, binaries or other
files needed for the specific software installation. Copy these to the installer node before running the software
install module. Installation files can be copied anywhere on the installer node but will be located more quickly
if located in directories under a /home directory.

Run the prep phase:

$ pup software --prep <install module name>

After successful completion, run the init or install phase. (Install will run the init phase prior to installation phase):

$ pup software --init-clients <install module name>

$ pup software --install <install module name>

POWER-Up provides a simple framework for running user provided software install modules. See Creating Software
Install Modules for guidance on how to create these modules.

35

POWER-Up User Guide Documentation, Release 2.0

36 Chapter 9. Running the POWER-Up Software Installation Software

CHAPTER 10

Creating Software Install Modules

POWER-Up provides a simple framework for running user provided software install modules. Software install mod-
ules are Python modules which reside in the power-up/software directory. The module may be given any valid Python
module name. A POWER-Up software install module can contain any user provided code, but it must implement a
class named ‘software’ and the software class must implement the following methods;

• README

• prep

• init_client

• install

• status

The prep method is generally intended to provide setup of repositories and directories and installation and configuration
of a web server. POWER-Up provides support for setting up an EPEL mirror and supports installation of the nginx
web server.

In order to facilitate software installation to clusters without internet access, the prep method is intended to be able to
run without requiring access to the cluster nodes. This allows preloading of required software onto a laptop or other
node prior to being connected to the cluster.

The init_client method should provide for license accept activities and setting up client nodes to access the POWER-Up
node for any implemented repositories.

The install method needs to implement the logic for installing the desired software packages and binaries on the cluster
nodes. POWER-Up includes Ansible. The install method may make use of any Ansible modules or POWER-Up
provided playbooks.

37

POWER-Up User Guide Documentation, Release 2.0

38 Chapter 10. Creating Software Install Modules

CHAPTER 11

Running the Watson Machine Learning (WML) Accelerator Software
Install Module

11.1 Overview

The WML Accelerator software installation can be automated using the POWER-Up software installer and the WML
Accelerator Software Install Module. At current time, the WMLA software installer only supports the licensed version
of WMLA running on Power hardware.

The WML Accelerator Software Install Module provides for rapid installation of the WML Accelerator software to a
homogeneous cluster of POWER8 or POWER9 servers.

The install module creates a web based software installation server on one of the cluster nodes or another node with
access to the cluster. The software server is populated with repositories and files needed for installation of WML
Accelerator.

Once the software server is setup, installation scripts orchestrate the software installation to one or more client nodes.
Note that the software installer node requires access to several open source repositories during the ‘preparation’ phase.
During the preparation phase, packages which WML Accelerator is dependent on are staged on the POWER-Up
installer node. After completion of the preparation phase, the installation requires no further access to the open source
repositories and can thus enable installation to servers which do not have internet access.

Running POWER-Up software on one of the cluster nodes is supported. This will “self-install” WML Accelerator
on to the install along with the rest of the cluster nodes at the same time. This eliminates the need for a dedicated
installer node but requires some additional controls to handle system reboots. Rebooting is controlled via an Ansible
variable, ‘pup_reboot’, that is set automatically in the inventory. A global ‘pup_reboot=True’ is added to default
to original reboot behavior. If the installer node is included in the inventory, a ‘pup_reboot=True’ host variable is
automatically added to the inventory (and anytime validation is called it will ensure this value is set, preventing an
override). Additional client nodes could also set ‘pup_reboot=True’ to prevent them from rebooting.

39

POWER-Up User Guide Documentation, Release 2.0

11.2 Support

Questions regarding the WML Accelerator installation software, installation, or suggestions for improvement can be
posted on IBM’s developer community forum at https://developer.ibm.com/answers/index.html with the PowerAI tag.

Answered questions regarding PowerAI can be viewed at https://developer.ibm.com/answers/topics/powerai/

11.3 For Advanced Users

User’s experienced with the WMLA installation process may find the advanced user instructions useful. Appendix - B
WMLA Installation for Advanced Users

11.4 Set up of the POWER-Up Software Installer Node

POWER-Up Node Prerequisites;

1. The POWER-Up software installer currently runs under RHEL 7.5 or above.

2. The user account used to run the POWER-Up software needs sudo privileges.

3. Enable access to the Extra Packages for Enterprise Linux (EPEL) repository. (https://fedoraproject.org/wiki/
EPEL#Quickstart)

4. Enable the common, optional and extras repositories.

On POWER8:

$ sudo subscription-manager repos --enable=rhel-7-for-power-le-rpms --
→˓enable=rhel-7-for-power-le-optional-rpms --enable=rhel-7-for-power-le-
→˓extras-rpms

On POWER9:

$ sudo subscription-manager repos --enable=rhel-7-for-power-9-rpms --
→˓enable=rhel-7-for-power-9-optional-rpms --enable=-enable=rhel-7-for-
→˓power-9-extras-rpms

5. Insure that there is at least 16 GB of available disk space in the partition holding the /srv directory:

$ df -h /srv

6. Install the version of POWER-Up software appropriate for the version of WML Accelerator you wish to install.
The versions listed in the table below are the versions tested with the corresponding release of WML Accelerator
or prior release of PowerAI Enterprise;

WML Accelerator
Release

POWER-Up software
installer vs

Notes EOL
date

1.1.2 software-install-b2.12 Support for installation of PAIE 1.1.2
1.2.0 wmla120-1.0.0 Support for installation of WMLA 1.2.0
1.2.0 wmla120-1.0.1 Support for installation of WMLA 1.2.0
1.2.0 wmla120-1.0.2 Validation checks. Install WMLA to installer node.

Operating system install.
1.2.1 wmla121-1.0.0 Support for installation of WMLA 1.2.1

40 Chapter 11. Running the Watson Machine Learning (WML) Accelerator Software Install Module

https://developer.ibm.com/answers/index.html
https://developer.ibm.com/answers/topics/powerai/
https://fedoraproject.org/wiki/EPEL#Quickstart
https://fedoraproject.org/wiki/EPEL#Quickstart

POWER-Up User Guide Documentation, Release 2.0

From your home directory install the POWER-Up software and initialize the environment. For additional information
see Installing the POWER-Up Software:

$ sudo yum install git

$ git clone https://github.com/ibm/power-up -b wmla121-1.0.0

$ cd power-up

$./scripts/install.sh

$ source scripts/setup-env

NOTES:

• The latest functional enhancements and defect fixes can be obtained by cloning the software installer without
specifying the branch release. Generally, you should use a release level specified in the table above unless you
are experiencing problems.:

git clone https://github.com/ibm/power-up

• Multiple users can install and use the WMLA installer software, however there is only one software server
created and there are no safeguards built in to protect against concurrent modifications of the software server
content, data files or client nodes.

• Each user of the WMLA installer software must install the POWER-Up software following the steps above.

11.5 Installation of WML Accelerator

Installation of the WML Accelerator software involves the following steps;

1. Preparation of the client nodes

2. Preparation of the software server

3. Initialization of the cluster nodes

4. Installation of software on the cluster nodes

11.5.1 Preparation of the client nodes

Before beginning automated installation, you should have completed the ‘Setup for automated installer steps’ at https:
//www.ibm.com/support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html PowerUp includes a simple
to use operating system installation utility which can be used to install operating systems if needed. See Running
Operating System Install

Before proceeding with preparation of the POWER-Up server, you will need to gather the following information;

• Fully qualified domain name (FQDN) for each client node

• Userid and password or private ssh key for accessing the client nodes. Note that for running an automated
installation, the same user id and password must exist on all client nodes and must be configured with sudo
access. The PowerUp software installer uses passwordless ssh access during the install. If an ssh key is not
available one will be generated and distributed to all the cluster nodes.

11.5. Installation of WML Accelerator 41

https://www.ibm.com/support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html
https://www.ibm.com/support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html

POWER-Up User Guide Documentation, Release 2.0

11.5.2 Copy or Extract the WMLA software packages onto the PowerUp installation
node.

Before beginning installation of WML Accelerator, the binary file containing the licensed or eval version of the wmla
software needs to be copied or downloaded onto the installer node. The files can be copied anywhere, but the POWER-
Up software can locate them quicker if the files are under a subdirectory of one of the /home/ directories or the /root
directory.

• WML Accelerator binary file. (ibm-wmla-*_*.bin)

Extract WMLA. Assuming the WMLA binary is in /home/user/wmla121bin:

cd /home/user/wmla121bin
bash ibm-wmla-1.2.1_ppc64le.bin

In addition to the Red Hat and EPEL repositories, the POWER-Up software server needs access to the following
repositories during the preparation phase;

• IBM AI repo

• Cuda driver

• Anaconda

These can be accessed using the public internet (URL’s are ‘built-in’) or from an alternate web site such as an intranet
mirror repository, another POWER-Up server or from a mounted USB key.

NOTES:

• Extraction and license acceptance of WML Accelerator must be performed on the same hardware architecture
as the intended target nodes. If you are running the POWER-Up installer software on an x_86 node, you must
first extract the files on an OpenPOWER node and then copy all of the extracted contents to the POWER-Up
installer node.

• Red Hat dependent packages are unique to Power8, Power9 and x86 and must be downloaded on the target
architecture. If you are running the WML Accelerator installer on a different architecture than the architecture
of your cluster nodes, you must download the Red Hat dependent packages on a node of the same architecture
as your cluster and then copy them to a directory on the installer node. A utility script is included to facilitate
this process. To use the script, insure you have ssh access with sudo privileges to an appropriate node which has
a subscription to the Red Hat ‘common’, ‘optional’ and ‘extras’ channels. (One of the cluster nodes or any other
suitable node can be used for this purpose). To run the script from the power-up directory on the installer node:

./software/get-dependent-packages.sh userid hostname arch

The hostname can be a resolvable hostname or ip address. The get-dependent-packages script will download the
required packages on the specified Power node and then move them to the ~/tempdl directory on the installer node.
After running the script, run/rerun the –prep phase of installation. For dependent packages, choose option D (Create
from files in a local Directory) and enter the full absolute path to the tempdl/ directory. To run the WMLA installer
and refresh just the dependencies repo, execute the following:

pup software --step dependency_repo --prep wmla*

Status of the Software Server

At any time, you can check the status of the POWER-Up software server by running:

$ pup software --status wmla*

To use the automated installer with the evaluation version of WML Accelerator, include the –eval switch in all pup
commands. ie:

42 Chapter 11. Running the Watson Machine Learning (WML) Accelerator Software Install Module

POWER-Up User Guide Documentation, Release 2.0

$ pup software --status --eval wmla*

Note: The POWER-Up software installer runs python installation modules. Inclusion of the ‘.py’ in the software
module name is optional. ie For WML Accelerator version 1.2.1, wmla121 or wmla121.py are both acceptable.

Hint: The POWER-Up command line interface supports tab autocompletion.

Preparation is run with the following POWER-Up command:

$ pup software --prep wmla*

Preparation is interactive and may be rerun if needed. Respond to the prompts as appropriate for your environment.
Note that the EPEL, Cuda, dependencies and Anaconda repositories can be replicated from the public web sites or
from alternate sites accessible on your intranet environment or from local disk (ie from a mounted USB drive). Most
other files come from the local file system.

11.5.3 Initialization of the Client Nodes

During the initialization phase, you will need to enter a resolvable hostname for each client node in a cluster inventory
file. If installing WMLA to the installer node, it also must be entered in the cluster inventory file. Optionally you may
select from an ssh key in your .ssh/ directory. If one is not available, an ssh key pair will be automatically generated.
You will also be prompted for a password for the client nodes. Initialization will set up all client nodes for installation.
Optionally during init clients you may run validation checks against all cluster nodes. Validation checks validate the
following;

• hostnames are resolvable to FQDN for all nodes in the cluster

• Firewall ports are enabled (or firewall is disabled)

• Shared storage directories are properly mounted and appropriate permission bits set

• Time is synchronizes across the cluster nodes

• Storage and memory resources are adequate on all cluster nodes

• Appropriate OS is installed on all cluster nodes

To initialize the client nodes and enable access to the POWER-Up software server:

$ pup software --init-clients wmla*

NOTES:

• During the initialization phase you will be required to create an inventory list of the nodes being installed. An
editor window will be opened automatically to enable this.

• During the initialization phase you will be required to provide values for certain environment variables needed by
Spectrum Conductor with Spark and Spectrum Deep Learning Impact. An editor window will be automatically
opened to enable this.

• The CLUSTERADMIN variable will be automatically populated with the cluster node userid provided during
the cluster inventory creation.

• The DLI_SHARED_FS environment variable should be the full absolute path to the shared file system mount
point. (eg DLI_SHARED_FS: /mnt/my-mount-point). The shared file system and the client node mount points
need to be configured prior to installing WML Accelerator.

• If left blank, the DLI_CONDA_HOME environment variable will be automatically populated. If entered, it
should be the full absolute path of the install location for Anaconda. (ie DLI_CONDA_HOME: /opt/anaconda3)

• Initialization of client nodes can be rerun if needed.

11.5. Installation of WML Accelerator 43

POWER-Up User Guide Documentation, Release 2.0

11.5.4 Installation

To install the WML Accelerator software and prerequisites:

$ pup software --install wmla*

NOTES:

• Installation of WML Accelerator can be rerun if needed.

After completion of the installation of the WML Accelerator software, you must configure Spectrum Conductor Deep
Learning Impact and apply any outstanding fixes. Go to https://www.ibm.com/support/knowledgecenter/SSFHA8,
choose your version of WML Accelerator and then use the search bar to search for ‘Configure IBM Spectrum Con-
ductor Deep Learning Impact’.

11.5.5 Additional Notes

You can browse the content of the POWER-Up software server by pointing a web browser at the address of POWER-
Up installer node. Individual files can be copied to client nodes using wget or curl if desired.

Dependent software packages The WML Accelerator software is dependent on additional open source software
that is not shipped with WML Accelerator. Some of these dependent packages are downloaded to the POWER-Up
software server from enabled yum repositories during the preparation phase and are subsequently available to the
client nodes during the install phase. Additional software packages can be installed in the ‘dependencies’ repo on the
POWER-Up software server by listing them in the power-up/software/dependent-packages.list file. Entries in this file
can be delimited by spaces or commas and can appear on multiple lines. Note that packages listed in the dependent-
packages.list file are not automatically installed on client nodes unless needed by the PowerAI software. They can be
installed on a client node explicitly using yum on the client node (ie yum install pkg-name). Alternatively, they can be
installed on all client nodes at once using Ansible (run from within the power-up directory):

$ ansible all -i playbooks/software_hosts --become --ask-become-pass -m yum -a
→˓"name=pkg-name"

or on a subset of nodes (eg the master nodes)

$ ansible master -i playbooks/software_hosts --become --ask-become-pass -m yum -a
→˓"name=pkg-name"

11.6 Uninstalling the POWER-Up Software

To uninstall the POWER-Up software and remove the software repositories, follow the instructions below;

1. Identify platform to remove:

$ PLATFORM="ppc64le"

2. Stop and remove the nginx web server:

$ sudo nginx -s stop
$ sudo yum erase nginx -y

3. If you wish to remove the http service from the firewall on this node:

$ sudo firewall-cmd --permanent --remove-service=http
$ sudo firewall-cmd --reload

44 Chapter 11. Running the Watson Machine Learning (WML) Accelerator Software Install Module

https://www.ibm.com/support/knowledgecenter/SSFHA8

POWER-Up User Guide Documentation, Release 2.0

4. If you wish to stop and disable the firewall service on this node:

$ sudo systemctl stop firewalld.service
$ sudo systemctl disable firewalld.service

5. Remove the yum.repo files created by the WMLA installer:

$ sudo rm /etc/yum.repos.d/cuda.repo
$ sudo rm /etc/yum.repos.d/nginx.repo

6. Remove the software server content and repositories (replace ‘wmla121-ppc63le’ with current software module
and architecture):

$ sudo rm -rf /srv/pup/wmla121-ppc64le/anaconda
$ sudo rm -rf /srv/pup/wmla121-ppc64le/wmla-license
$ sudo rm -rf /srv/pup/wmla121-ppc64le/spectrum-dli
$ sudo rm -rf /srv/pup/wmla121-ppc64le/spectrum-conductor
$ sudo rm -rf /srv/pup/wmla121-ppc64le/repos

7. Remove the yum cache data depending on Computer Architecture:

$ sudo rm -rf /var/cache/yum/${PLATFORM}/7Server/cuda/
$ sudo rm -rf /var/cache/yum/${PLATFORM}/7Server/nginx/

8. Uninstall the PowerUp Software

• Assuming you installed from your home directory, execute:

$ sudo rm -rf ~/power-up

11.6. Uninstalling the POWER-Up Software 45

POWER-Up User Guide Documentation, Release 2.0

46 Chapter 11. Running the Watson Machine Learning (WML) Accelerator Software Install Module

CHAPTER 12

Running the WMLA install module in an air-gapped environment

12.1 Overview

POWER-Up can be used to install Watson Machine Learning Accelerator in an air-gapped environment (i.e. isolated
network without access to public software repositories).

Required dependencies first must be collected using pup software wmla121 –prep in an environment with access
repositories. Once collected the dependencies can be bundled into an archive to facilitate easy transfer into the air-
gapped environment.

12.2 Collect and bundle dependencies

1. Setup installer node

2. Collect WMLA software

3. Run –prep to collect WMLA dependencies:

$ pup software wmla121 --prep

4. Run –download-install-deps to collect POWER-Up install dependencies:

$ pup software wmla121 --download-install-deps

5. Run –status to verify all dependencies are present:

$ pup software wmla121 --status

6. Run –bundle-to to archive dependencies in single file:

$ pup software wmla121 --bundle-to ./

7. Archive can now be transferred:

47

POWER-Up User Guide Documentation, Release 2.0

$ ls wmla.*.tar

12.3 Install and run POWER-Up using dependency archive

1. Extract archive:

$ sudo mkdir -p /srv/pup/wmla121-ppc64le/
$ sudo tar xvf wmla.*.tar -C /srv/pup/wmla121-ppc64le/

2. Enable local yum repository:

$ echo "[pup-install]
name=POWER-Up Installation Dependencies
baseurl=file:///srv/pup/wmla121-ppc64le/repos/pup_install_yum/rhel/7/family/pup_
→˓install_yum/
enabled=1
gpgcheck=0" | sudo tee /etc/yum.repos.d/pup-install.repo

3. Update yum cache:

$ sudo yum makecache

4. Install Git:

$ sudo yum -y install git

5. Clone POWER-UP from local repo:

$ git clone /srv/pup/wmla121-ppc64le/power-up.git/

6. Checkout POWER-UP release tag:

$ cd power-up
$ git checkout wmla121-1.0.1

7. Install POWER-Up software:

$./scripts/install.sh -p /srv/pup/wmla121-ppc64le/repos/pup_install_pip/
$ source ./scripts/setup-env

8. Verify all dependencies are present:

$ pup software wmla121 --status

12.4 Continue with ‘–init-clients’ and ‘–install’

1. Initialize Client Nodes

2. Installation

48 Chapter 12. Running the WMLA install module in an air-gapped environment

CHAPTER 13

Cluster Configuration File Specification

Specification Version: v2.0

Deployment of the OpenPOWER Cloud Reference Cluster is controlled by the ‘config.yml’ file. This file is stored in
YAML format. The definition of the fields and the YAML file format are documented below.

Each section represents a top level dictionary key:

version:
globals:
location:
deployer:
switches:
interfaces:
networks:
node_templates:
software_bootstrap:

49

POWER-Up User Guide Documentation, Release 2.0

13.1 version:

Element Example(s) Description Required

version: version: v2.0

Config file version.
Release
Branch Sup-
ported Config
File Version

release-2.x
version: v2.0

release-1.x
version: 1.1

release-0.9
version: 1.0

yes

13.2 globals:

globals:
introspection:
env_variables:
switch_mode_mgmt:
switch_mode_data:
dhcp_lease_time:

50 Chapter 13. Cluster Configuration File Specification

POWER-Up User Guide Documentation, Release 2.0

Element Example(s) Description Required

globals:
introspection:
...

introspection: true

Introspection shall be en-
abled. Evaluates to false
if missing.

false
true

no

globals:
env_variables:
...

env_variables:
https_proxy:

→˓http://192.168.1.
→˓2:3128

http_proxy:
→˓http://192.168.1.
→˓2:3128

no_proxy:
→˓localhost,127.0.
→˓0.1

Apply environmental vari-
ables to the shell.
The example to the left
would give the following
result in bash:

export https_proxy=”http:
//192.168.1.2:3128”
export http_proxy=”http:
//192.168.1.2:3128”
export
no_proxy=”localhost,127.0.0.1”

no

globals:
switch_mode_

→˓mgmt:
...

switch_mode_mgmt:
→˓active

Sets POWER-Up man-
agement switch mode.
Evaluates to active if
missing.

passive
active

no

globals:
switch_mode_

→˓data:
...

switch_mode_data:
→˓active

Sets POWER-Up data
switch mode. Evaluates to
active if missing.

passive
active

no

globals:
dhcp_lease_time:
...

dhcp_lease_time:
→˓15m

dhcp_lease_time: 1h

Sets DHCP lease time
given to client nodes.
Value can be in seconds,
minutes (e.g. “15m”),
hours (e.g. “1h”) or
“infinite” (lease does not
expire).

no

13.3 location:

location:
time_zone:
data_center:
racks:

- label:
(continues on next page)

13.3. location: 51

http://192.168.1.2:3128
http://192.168.1.2:3128
http://192.168.1.2:3128
http://192.168.1.2:3128

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

room:
row:
cell:

Element Example(s) Description Required

location:
time_zone:
...

time_zone: UTC

time_zone: America/
→˓Chicago

Cluster time zone in tz
database format.

no

location:
data_center:
...

data_center: East
→˓Coast

data_center:
→˓Austin, TX

Data center name to be as-
sociated with cluster in-
ventory.

no

location:
racks:

- label:
room:
row:
cell:

...

racks:
- label: rack1
room: lab41
row: 5
cell: B

- label: rack2
room: lab41
row: 5
cell: C

List of cluster racks.

Required keys:
label - Unique label
used to reference
this rack elsewhere
in the config file.

Optional keys:
room - Physical
room location of
rack.
row - Physical row
location of rack.
cell - Physical cell
location of rack.

yes

13.4 deployer:

deployer:
gateway:
networks:

mgmt:
- device:
interface_ipaddr:
container_ipaddr:
bridge_ipaddr:
vlan:
netmask:
prefix:

client:

(continues on next page)

52 Chapter 13. Cluster Configuration File Specification

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

- type:
device:
container_ipaddr:
bridge_ipaddr:
vlan:
netmask:
prefix:

13.4. deployer: 53

POWER-Up User Guide Documentation, Release 2.0

Element Example(s) Description Required

deployer:
gateway:
...

gateway: true

Deployer shall act as clus-
ter gateway. Evaluates to
false if missing.

false
true

The deployer will be con-
figured as the default gate-
way for all client nodes.
Configuration includes
adding a ‘MASQUER-
ADE’ rule to the de-
ployer’s ‘iptables’ NAT
chain and setting the
‘dnsmasq’ DHCP service
to serve the deployer’s
client management bridge
address as the default
gateway.

Note: Specifying the
‘gateway’ explicitly on
any of the data networks
will override
this behaviour.

no

deployer:
networks:

mgmt:
-

→˓device:

→˓interface_ipaddr:

→˓container_ipaddr:

→˓bridge_ipaddr:
vlan:

→˓netmask:

→˓prefix:
...

...

mgmt:
- device:

→˓enp1s0f0
interface_

→˓ipaddr: 192.168.
→˓1.2

netmask: 255.
→˓255.255.0

- device:
→˓enp1s0f0

container_
→˓ipaddr: 192.168.
→˓5.2

bridge_
→˓ipaddr: 192.168.
→˓5.3

vlan: 5
prefix: 24

Management network in-
terface configuration.

Required keys:
device -
Management
network interface
device.

Optional keys:
vlan - Management
network vlan
(tagged).

IP address must be
defined with:

interface_ipaddr -
Management
interface IP address
(non-tagged).
— or —
container_ipaddr -
Container
management
interface IP address
(tagged).
bridge_ipaddr -
Deployer
management bridge
interface IP address
(tagged).

Subnet mask must be
defined with:

netmask -
Management
network bitmask.
— or —
prefix -
Management
network bit-length.

yes

deployer:
networks:

client:
- type:

→˓device:

→˓container_ipaddr:

→˓bridge_ipaddr:
vlan:

→˓netmask:

→˓prefix:

client:
- type: ipmi
device:

→˓enp1s0f0
container_

→˓ipaddr: 192.168.
→˓10.2

bridge_
→˓ipaddr: 192.168.
→˓10.3

vlan: 10
netmask: 255.

→˓255.255.0
- type: pxe
device:

→˓enp1s0f0
container_

→˓ipaddr: 192.168.
→˓20.2

bridge_
→˓ipaddr: 192.168.
→˓20.3

vlan: 20
prefix: 24

Client node BMC (IPMI)
and OS (PXE) network in-
terface configuration. An-
sible communicates with
clients using this network
during “post deploy” op-
erations.

Required keys:
type - IPMI or PXE
network (ipmi/pxe).
device -
Management
network interface
device.
container_ipaddr -
Container
management
interface IP
address.
bridge_ipaddr -
Deployer
management bridge
interface IP
address.
vlan - Management
network vlan.

Subnet mask must be
defined with:

netmask -
Management
network bitmask.
— or —
prefix -
Management
network bit-length.

yes

54 Chapter 13. Cluster Configuration File Specification

POWER-Up User Guide Documentation, Release 2.0

13.5 switches:

switches:
mgmt:

- label:
hostname:
userid:
password:
ssh_key:
class:
rack_id:
rack_eia:
interfaces:

- type:
ipaddr:
vlan:
port:

links:
- target:
ipaddr:
vip:
netmask:
prefix:
ports:

data:
- label:
hostname:
userid:
password:
ssh_key:
class:
rack_id:
rack_eia:
interfaces:

- type:
ipaddr:
vlan:
port:

links:
- target:
ipaddr:
vip:
netmask:
prefix:
ports:

13.5. switches: 55

POWER-Up User Guide Documentation, Release 2.0

Element Example(s) Description Required

switches:
mgmt:

- label:
hostname:
userid:
password:
class:
rack_id:
rack_eia:

→˓interfaces:
-

→˓type:

→˓ipaddr:

→˓vlan:

→˓port:
links:

-
→˓target:

→˓ports:
...

mgmt:
- label: mgmt_

→˓switch
hostname:

→˓switch23423
userid: admin
password:

→˓abc123
class: lenovo
rack_id:

→˓rack1
rack_eia: 20
interfaces:

- type:
→˓outband

→˓ipaddr: 192.168.
→˓1.10

port:
→˓mgmt0

- type:
→˓inband

→˓ipaddr: 192.168.
→˓5.20

port:
→˓15

links:
-

→˓target: deployer
ports:

→˓1
-

→˓target: data_
→˓switch

ports:
→˓2

Management switch con-
figuration. Each physi-
cal switch is defined as an
item in the mgmt: list.

Required keys:
label - Unique label
used to reference
this switch
elsewhere in the
config file.

Required keys in “active”
switch mode:

userid - Userid for
switch management
account.
password1 - Plain
text password
associated with
userid.
ssh_key1 - Path to
SSH private key file
associated with
userid.

Required keys in
“passive” switch mode:

class - Switch class
(lenovo/mellanox/cisco/cumulus).

Optional keys:
hostname -
Hostname
associated with
switch management
network interface.
rack_id - Reference
to rack label
defined in the
locations: racks:=
element.
rack_eia - Switch
position within
rack.
interfaces - See
interfaces.
links - See links.

yes

switches:
data:

- label:
hostname:
userid:
password:
class:
rack_id:
rack_eia:

→˓interfaces:
-

→˓type:

→˓ipaddr:

→˓vlan:

→˓port:
links:

-
→˓target:

→˓ports:
...

example #1:

data:
- label: data_

→˓switch_1
hostname:

→˓switch84579
userid: admin
password:

→˓abc123
class:

→˓mellanox
rack_id:

→˓rack1
rack_eia: 21
interfaces:

- type:
→˓inband

→˓ipaddr: 192.168.
→˓1.21

port:
→˓15

links:
-

→˓target: mgmt_
→˓switch

ports:
→˓1

-
→˓target: data_
→˓switch_2

ports:
→˓2

example #2:

data:
- label: data_

→˓switch
hostname:

→˓switch84579
userid: admin
password:

→˓abc123
rack_id:

→˓rack1
rack_eia: 21
interfaces:

- type:
→˓outband

→˓ipaddr: 192.168.
→˓1.21

port:
→˓mgmt0

links:
-

→˓target: mgmt_
→˓switch

ports:
→˓mgmt0

Data switch configura-
tion. Each physical switch
is defined as an item in
the data: list. Key/value
specs are identical to
mgmt switches.

yes

switches:
mgmt:

- ...

→˓interfaces:
-

→˓type:

→˓ipaddr:

→˓port:
data:

- ...

→˓interfaces:
-

→˓type:

→˓ipaddr:

→˓port:

example #1:

interfaces:
- type: outband
ipaddr: 192.

→˓168.1.20
port: mgmt0

example #2:

interfaces:
- type: inband
ipaddr: 192.

→˓168.5.20
netmask: 255.

→˓255.255.0
port: 15

Switch interface configu-
ration.

Required keys:
type - In-Band or
Out-of-Band
(inband/outband).
ipaddr - IP address.

Optional keys:
vlan - VLAN.
port - Port.

Subnet mask may be
defined with:

netmask -
Management
network bitmask.
— or —
prefix -
Management
network bit-length.

no

switches:
mgmt:

- ...
links:

-
→˓target:

→˓ports:
data:

- ...
links:

-
→˓target:

→˓port:
- ...
links:

-
→˓target:

→˓ipaddr:

→˓vip:

→˓netmask:

→˓vlan:

→˓ports:

example #1:

mgmt:
- label: mgmt_

→˓switch
...
interfaces:

- type:
→˓inband

→˓ipaddr: 192.168.
→˓5.10

port:
→˓15

links:
-

→˓target: deployer
ports:

→˓10
-

→˓target: data_
→˓switch

ports:
→˓11
data:

- label: data_
→˓switch

...
interfaces:

- type:
→˓outband

→˓ipaddr: 192.168.
→˓5.10

vlan: 5
port:

→˓mgmt0
links:

-
→˓target: mgmt_
→˓switch

ports:
→˓mgmt0

example #2:

data:
- label: data_1
...
links:

-
→˓target: mgmt

→˓ipaddr: 192.168.
→˓5.31

vip:
→˓192.168.5.254

ports:
→˓mgmt0

-
→˓target: data_2

→˓ipaddr: 10.0.0.1

→˓netmask: 255.255.
→˓255.0

vlan:
→˓4000

ports:
- 7
- 8

- label: data_2
links:

-
→˓target: mgmt

→˓ipaddr: 192.168.
→˓5.32

vip:
→˓192.168.5.254

ports:
→˓mgmt0

-
→˓target: data_2

→˓ipaddr: 10.0.0.2

→˓network: 255.255.
→˓255.0

vlan:
→˓4000

ports:
- 7
- 8

Switch link configuration.
Links can be configured
between any switches
and/or the deployer.

Required keys:
target - Reference
to destination
target. This value
must be set to
‘deployer’ or
correspond to
another switch’s
label
(switches_mgmt,
switches_data).
ports - Source port
numbers (not target
ports!). This can
either be a single
port or a list of
ports. If a list is
given then the links
will be aggregated.

Optional keys:
ipaddr -
Management
interface IP
address.
vlan - Management
interface vlan.
vip - Virtual IP
used for redundant
switch
configurations.

Subnet mask must be
defined with:

netmask -
Management
network bitmask.
— or —
prefix -
Management
network bit-length.

In example #1 port 10
of “mgmt_switch” is
cabled directly to the
deployer and port 11
of “mgmt_switch” is
cabled to the mangement
port 0 of “data_switch”.
An inband management
interface is configured
with an IP address
of ‘192.168.5.10’ for
“mgmt_switch”, and the
dedicated management
port 0 of “data_switch”
is configured with an IP
address of “192.168.5.11”
on vlan “5”.
In example #2 a redundant
data switch configuration
is shown. Ports 7 and
8 (on both switches)
are configured as an
aggrated peer link on vlan
“4000” with IP address
of “10.0.0.1/24” and
“10.0.0.2/24”.

no

56 Chapter 13. Cluster Configuration File Specification

POWER-Up User Guide Documentation, Release 2.0

13.6 interfaces:

interfaces:
- label:

description:
iface:
method:
address_list:
netmask:
broadcast:
gateway:
dns_search:
dns_nameservers:
mtu:
pre_up:
vlan_raw_device:

- label:
description:
DEVICE:
BOOTPROTO:
ONBOOT
ONPARENT
MASTER
SLAVE
BONDING_MASTER
IPADDR_list:
NETMASK:
BROADCAST:
GATEWAY:
SEARCH:
DNS1:
DNS2:
MTU:
VLAN:

1 Either password or ssh_key shall be specified, but not both.

13.6. interfaces: 57

POWER-Up User Guide Documentation, Release 2.0

Element Example(s) Description Required

interfaces:
- ...
- ...

List of OS interface
configuration definitions.
Each definition can be for-
matted for either Ubuntu
or RHEL.

no

interfaces:
- label:

description:
iface:
method:
address_list:
netmask:
broadcast:
gateway:
dns_search:
dns_

→˓nameservers:
mtu:
pre_up:
vlan_raw_

→˓device:

- label: manual1
description:

→˓manual network 1
iface: eth0
method: manual

- label: dhcp1
description:

→˓dhcp interface 1
iface: eth0
method: dhcp

- label: static1
description:

→˓static interface
→˓1
iface: eth0
method: static
address_list:

- 9.3.89.14
- 9.3.89.18-

→˓9.3.89.22
- 9.3.89.111-

→˓9.3.89.112
- 9.3.89.120

netmask: 255.255.
→˓255.0
broadcast: 9.3.

→˓89.255
gateway: 9.3.89.1
dns_search: your.

→˓dns.com
dns_nameservers:

→˓9.3.1.200 9.3.1.
→˓201
mtu: 9000
pre_up: command

- label: vlan1
description:

→˓vlan interface 1
iface: eth0.10
method: manual

- label: vlan2
description:

→˓vlan interface 2
iface: myvlan.20
method: manual
vlan_raw_device:

→˓eth0

- label: bridge1
description:

→˓bridge interface
→˓1
iface: br1
method: static
address_start:

→˓10.0.0.100
netmask: 255.255.

→˓255.0
bridge_ports:

→˓eth0
bridge_fd: 9
bridge_hello: 2
bridge_maxage: 12
bridge_stp: off

- label: bond1_
→˓interface0
description:

→˓primary
→˓interface for
→˓bond 1
iface: eth0
method: manual
bond_master:

→˓bond1
bond_primary:

→˓eth0

- label: bond1_
→˓interface1
description:

→˓secondary
→˓interface for
→˓bond 1
iface: eth1
method: manual
bond_master:

→˓bond1

- label: bond1
description:

→˓bond interface 1
iface: bond1
address_start:

→˓192.168.1.10
netmask: 255.255.

→˓255.0
bond_mode:

→˓active-backup
bond_miimon: 100
bond_slaves: none

- label: osbond0_
→˓interface0
description:

→˓primary
→˓interface for
→˓osbond0
iface: eth0
method: manual
bond_master:

→˓osbond0
bond_primary:

→˓eth0

- label: osbond0_
→˓interface1
description:

→˓secondary
→˓interface for
→˓osbond0
iface: eth1
method: manual
bond_master:

→˓osbond0

- label: osbond0
description:

→˓bond interface
iface: osbond0
address_start:

→˓192.168.1.10
netmask: 255.255.

→˓255.0
bond_mode:

→˓active-backup
bond_miimon: 100
bond_slaves: none

- label: osbond0_
→˓vlan10
description:

→˓vlan interface 1
iface: osbond0.10
method: manual

- label: bridge10
description:

→˓bridge interface
→˓for vlan10
iface: br10
method: static
address_start:

→˓10.0.10.100
netmask: 255.255.

→˓255.0
bridge_ports:

→˓osbond0.10
bridge_stp: off

- label: osbond0_
→˓vlan20
description:

→˓vlan interface 2
iface: osbond0.20
method: manual

- label: bridge20
description:

→˓bridge interface
→˓for vlan20
iface: br20
method: static
address_start:

→˓10.0.20.100
netmask: 255.255.

→˓255.0
bridge_ports:

→˓osbond0.20
bridge_stp: off

Ubuntu formatted OS in-
terface configuration.

Required keys:
label - Unique label
of interface
configuration to be
referenced within
networks:
node_templates:
interfaces:.

Optional keys:
description - Short
description of
interface
configuration to be
included as a
comment in OS
config files.
address_list - List
of IP address to
assign client
interfaces
referencing this
configuration. Each
list element may
either be a single IP
address or a range
(formatted as
<start_address>-
<end_address>).
address_start -
Starting IP address
to assign client
interfaces
referencing this
configuration.
Addresses will be
assigned to each
client interface
incrementally.

Optional “drop-in” keys:
The following key
names are derived
directly from the
Ubuntu interfaces
configuration file
(note that all “-”
charactes are
replaced with “_”).
Values will be
copied directly into
the interfaces file.
Refer to the
interfaces manpage

iface
method
netmask
broadcast
gateway
dns_search
dns_nameservers
mtu
pre_up
vlan_raw_device

Notes:
If ‘rename: true’ in
node_templates:
physi-
cal_interfaces:
pxe/data then the
iface value will be
used to rename the
interface.

If ‘rename: false’ in
node_templates:
physi-
cal_interfaces:
pxe/data then the
iface value will be
ignored and the
interface name
assigned by the OS
will be used. If the
iface value is
referenced in any
other interface
definition it will
also be replaced.

no

interfaces:
- label:

description:
DEVICE:
TYPE:
BOOTPROTO:
ONBOOT
ONPARENT:
MASTER:
SLAVE:
BONDING_

→˓MASTER:
IPADDR_list:
NETMASK:
BROADCAST:
GATEWAY:
SEARCH:
DNS1:
DNS2:
MTU:
VLAN:
NM_

→˓CONTROLLED:

- label: manual2
description:

→˓manual network 2
DEVICE: eth0
TYPE: Ethernet
BOOTPROTO: none
ONBOOT: yes
NM_CONTROLLED: no

- label: dhcp2
description:

→˓dhcp interface 2
DEVICE: eth0
TYPE: Ethernet
BOOTPROTO: dhcp
ONBOOT: yes
NM_CONTROLLED: no

- label: static2
description:

→˓static interface
→˓2
DEVICE: eth0
TYPE: Ethernet
BOOTPROTO: none
ONBOOT: yes
IPADDR_list:

- 9.3.89.14
- 9.3.89.18-

→˓9.3.89.22
- 9.3.89.111-

→˓9.3.89.112
- 9.3.89.120

NETMASK: 255.255.
→˓255.0
BROADCAST: 9.3.

→˓89.255
GATEWAY: 9.3.89.1
SEARCH: your.dns.

→˓com
DNS1: 9.3.1.200
DNS2: 9.3.1.201
MTU: 9000
NM_CONTROLLED: no

- label: vlan3
description:

→˓vlan interface 3
DEVICE: eth0.10
BOOTPROTO: none
ONBOOT: yes
ONPARENT: yes
VLAN: yes
NM_CONTROLLED: no

- label: bridge2
description:

→˓bridge interface
→˓2
DEVICE: br2
TYPE: Bridge
BOOTPROTO: static
ONBOOT: yes
IPADDR_start: 10.

→˓0.0.100
NETMASK: 255.255.

→˓255.0
STP: off
NM_CONTROLLED: no

- label: bridge2_
→˓port
description:

→˓port for bridge
→˓if 2
DEVICE: tap_br2
TYPE: Ethernet
BOOTPROTO: none
ONBOOT: yes
BRIDGE: br2
NM_CONTROLLED: no

- label: bond2_
→˓interface0
description:

→˓primary
→˓interface for
→˓bond 2
DEVICE: eth0
TYPE: Ethernet
BOOTPROTO: manual
ONBOOT: yes
MASTER: bond2
SLAVE: yes
NM_CONTROLLED: no

- label: bond2_
→˓interface1
description:

→˓secondary
→˓interface for
→˓bond 2
DEVICE: eth1
TYPE: Ethernet
BOOTPROTO: manual
ONBOOT: yes
MASTER: bond2
SLAVE: yes
NM_CONTROLLED: no

- label: bond2
description:

→˓bond interface 2
DEVICE: bond2
TYPE: Bond
BONDING_MASTER:

→˓yes
IPADDR_start:

→˓192.168.1.10
NETMASK: 255.255.

→˓255.0
ONBOOT: yes
BOOTPROTO: none
BONDING_OPTS:

→˓"mode=active-
→˓backup miimon=100
→˓"
NM_CONTROLLED: no

Red Hat formatted OS in-
terface configuration.

Required keys:
label - Unique label
of interface
configuration to be
referenced within
networks:
node_templates:
interfaces:.

Optional keys:
description - Short
description of
interface
configuration to be
included as a
comment in OS
config files.
IPADDR_list - List
of IP address to
assign client
interfaces
referencing this
configuration. Each
list element may
either be a single IP
address or a range
(formatted as
<start_address>-
<end_address>).
IPADDR_start -
Starting IP address
to assign client
interfaces
referencing this
configuration.
Addresses will be
assigned to each
client interface
incrementally.

Optional “drop-in” keys:
The following key
names are derived
directly from
RHEL’s ifcfg
configuration files.
Values will be
copied directly into
the ifcfg-<name>
files. Refer to the
RHEL IP
NETWORKING
for usage.

DEVICE
TYPE
BOOTPROTO
ONBOOT
ONPARENT
MASTER
SLAVE

BONDING_MASTER
NETMASK
BROADCAST
GATEWAY
SEARCH
DNS1
DNS2
MTU
VLAN

NM_CONTROLLED

Notes:
If ‘rename: true’ in
node_templates:
physi-
cal_interfaces:
pxe/data then the
DEVICE value will
be used to rename
the interface.

If ‘rename: false’ in
node_templates:
physi-
cal_interfaces:
pxe/data then the
DEVICE value will
be replaced by the
interface name
assigned by the OS.
If the DEVICE
value is referenced
in any other
interface definition
it will also be
replaced.

no

58 Chapter 13. Cluster Configuration File Specification

http://manpages.ubuntu.com/manpages/xenial/man5/interfaces.5.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Editing_Network_Configuration_Files.html#sec-Configuring_a_Network_Interface_Using_ifcg_Files
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Editing_Network_Configuration_Files.html#sec-Configuring_a_Network_Interface_Using_ifcg_Files

POWER-Up User Guide Documentation, Release 2.0

13.7 networks:

networks:
- label:

interfaces:

Element Example(s) Description Required

networks:
- label:

interfaces:

interfaces:
- label:

→˓example1
...

- label:
→˓example2

...
- label:

→˓example3
...

networks:
- label: all_

→˓nets
interfaces:

-
→˓example1

-
→˓example2

-
→˓example3

- label: group1
interfaces:

-
→˓example1

-
→˓example2

- label: group2
interfaces:

-
→˓example1

-
→˓example3

The ‘networks’ list de-
fines groups of interfaces.
These groups can be as-
signed to items in the
node_templates: list.

Required keys:
label - Unique label
of network group to
be referenced
within a
node_templates:
item’s ‘networks:’
value.
interfaces - List of
interfaces assigned
to the group.

no

13.8 node_templates:

node_templates:
- label:

ipmi:
userid:
password:

os:
hostname_prefix:
domain:
profile:

(continues on next page)

13.7. networks: 59

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

install_device:
users:

- name:
password:

groups:
- name:

kernel_options:
redhat_subscription:

physical_interfaces:
ipmi:

- switch:
ports:

pxe:
- switch:
interface:
rename:
ports:

data:
- switch:
interface:
rename:
ports:

interfaces:
networks:
roles:

60 Chapter 13. Cluster Configuration File Specification

POWER-Up User Guide Documentation, Release 2.0

Element Example(s) Description Required

node_templates:
- label:

ipmi:
os:
physical_

→˓interfaces:
interfaces:
networks:
roles:

- label:
→˓controllers
ipmi:

userid: admin
password:

→˓pass
os:

hostname_
→˓prefix: ctrl

domain: ibm.
→˓com

profile:
→˓ubuntu-14.04-
→˓server-ppc64el

install_
→˓device: /dev/sda

kernel_
→˓options: quiet
physical_

→˓interfaces:
ipmi:

-
→˓switch: mgmt_
→˓switch_1

ports:
- 1
- 3
- 5

pxe:
-

→˓switch: mgmt_
→˓switch_1

ports:
- 2
- 4
- 6

Node templates define
client node configura-
tions. Existing IPMI
credentials and net-
work interface physical
connection information
must be given to allow
Cluster POWER-Up to
connect to nodes. OS
installation characteristics
and post install network
configurations are also
defined.

Required keys:
label - Unique label
used to reference
this template.
ipmi - IPMI
credentials. See
node_templates:
ipmi.
os - Operating
system
configuration. See
node_templates:
os.
physical_interfaces
- Physical network
interface port
mappings. See
node_templates:
physi-
cal_interfaces.

Optional keys:
interfaces -
Post-deploy
interface
assignments. See
node_templates:
interfaces.
networks -
Post-deploy
network (interface
group)
assignments. See
node_templates:
networks.
roles - Ansible
group assignment.
See
node_templates:
roles.

yes

node_templates:
- ...

ipmi:
userid:
password:

- label: ppc64el
ipmi:

userid: ADMIN
password:

→˓admin
...

- lable: x86_64
ipmi:

userid: ADMIN
password:

→˓ADMIN
...

Client node IPMI creden-
tials. Note that IPMI cre-
dentials must be consis-
tent for all members of a
node template.

Required keys:
userid - IPMI
userid.
password - IPMI
password.

yes

node_templates:
- ...

os:
hostname_

→˓prefix:
domain:
profile:
install_

→˓device:
users:

-
→˓name:

→˓password:
groups:

-
→˓name:

kernel_
→˓options:

redhat_
→˓subscription:

- ...
os:

hostname_
→˓prefix:
→˓controller

domain: ibm.
→˓com

profile:
→˓ubuntu-14.04-
→˓server-ppc64el

install_
→˓device: /dev/sda

users:
- name:

→˓root

→˓password:
→˓<crypted
→˓password>

- name:
→˓user1

→˓password:
→˓<crypted
→˓password>

→˓groups: sudo,
→˓testgroup1

groups:
- name:

→˓testgroup1
- name:

→˓testgroup2
kernel_

→˓options: quiet
redhat_

→˓subscription:
state:

→˓present

→˓username: joe_
→˓user

→˓password:
→˓somepass

auto_
→˓attach: true

Client node operating sys-
tem configuration.

Required keys:
profile - Cobbler
profile to use for
OS installation.
This name usually
should match the
name of the
installation image
(with or without
the’.iso’ extension).
install_device -
Path to installation
disk device.

profile - Cobbler profile to
use for OS installation.
This name usually should
match the name of the
installation image (with
or without the’.iso’
extension).
install_device - Path to
installation disk device.

Optional keys:
hostname_prefix -
Prefix used to
assign hostnames to
client nodes
belonging to this
node template. A
“-” and
enumeration is
added to the end of
the prefix to make a
unique hostname
for each client node
(e.g. “controller-1”
and
“controoler-2”).
domain - Domain
name used to set
client FQDN. (e.g.
with ‘domain:
ibm.com’:
controller-
1.ibm.com) (e.g.
without ‘domain’
value: controller-
1.localdomain)
users - OS user
accounts to create.
All parameters in
the Ansible user
module are
supported. note:
Plaintext user
passwords are not
supported. For help
see Ansible’s guide
for generating
passwords.
groups - OS groups
to create. All
parameters in the
Ansible group
module are
supported.
kernel_options -
Kernel options

redhat_subscription
- Manage RHEL
subscription. All
parameters in the
Ansible
redhat_subscription
module are
supported.

yes

node_templates:
- ...

physical_
→˓interfaces:

ipmi:
-

→˓switch:

→˓ports:
pxe:

-
→˓switch:

→˓interface:

→˓rename:

→˓ports:
data:

-
→˓switch:

→˓interface

→˓rename:

→˓ports:

- ...
physical_

→˓interfaces:
ipmi:

-
→˓switch: mgmt_1

ports:
- 7
- 8
- 9

pxe:
-

→˓switch: mgmt_1

→˓interface: eth15

→˓rename: true
ports:

-
→˓10

-
→˓11

-
→˓12

data:
-

→˓switch: data_1

→˓interface: eth10

→˓rename: true
ports:

- 7
- 8
- 9

-
→˓switch: data_1

→˓interface: eth11

→˓rename: false
ports:

-
→˓10

-
→˓11

-
→˓12

Client node interface port
mappings.

Required keys:
ipmi - IPMI (BMC)
interface port
mappings. See
physi-
cal_interfaces:
ipmi.
pxe - PXE (OS)
interface port
mappings. See
physi-
cal_interfaces:
pxe/data.

Optional keys:
data - Data (OS)
interface port
mappings. See
physi-
cal_interfaces:
pxe/data.

yes

node_templates:
- ...

physical_
→˓interfaces:

ipmi:
-

→˓switch:

→˓ports:
...

- ...
physical_

→˓interfaces:
ipmi:

-
→˓switch: mgmt_1

ports:
- 7
- 8
- 9

IPMI (BMC) interface
port mappings.

Required keys:
switch - Reference
to mgmt switch
label defined in the
switches: mgmt:
element.
ports - List of port
number/identifiers
mapping to client
node IPMI
interfaces.

In the example three client
nodes are defined and
mapped to ports 7,8,9 of
a management switch la-
beled “mgmt_1”.

yes

node_templates:
- ...

physical_
→˓interfaces:

...
pxe:

-
→˓switch:

→˓interface:

→˓rename:

→˓ports:
data:

-
→˓switch:

→˓interface:

→˓rename:

→˓ports

- ...
physical_

→˓interfaces:
pxe:

-
→˓switch: mgmt_1

→˓interface: dhcp1

→˓rename: true
ports:

-
→˓10

-
→˓11

-
→˓12

data:
-

→˓switch: data_1

→˓interface:
→˓manual1

→˓rename: true
ports:

- 7
- 8
- 9

-
→˓switch: data_1

→˓interface:
→˓manual2

→˓rename: false
ports:

-
→˓10

-
→˓11

-
→˓12

OS (PXE & data) inter-
face port mappings.

Required keys:
switch - Reference
to switch label
defined in the
switches: mgmt: or
switches: data:
elements.
interface -
Reference to
interface label
defined in the
interfaces:
elements.
rename - Value
(true/false) to
control whether
client node
interfaces will be
renamed to match
the interface iface
(Ubuntu) or
DEVICE (RHEL)
value.
ports - List of port
number/identifiers
mapping to client
node OS interfaces.

Note: For additional
information on using
rename see notes in
interfaces: (Ubuntu) and
interfaces: (RHEL).

yes

node_templates:
- ...

interfaces:

interfaces:
- label: data_

→˓int1
...
- label: data_

→˓int2
...
- label: data_

→˓int3
...

node_templates:
- ...
interfaces:

- data_
→˓int1

- data_
→˓int2

- data_
→˓int3

OS network interface con-
figuration assignment.

Required keys:
interfaces - List of
references to
interface labels
from the top-level
interfaces:
dictionary.

no

node_templates:
- ...

networks:

interfaces:
- label: data_

→˓int1
...
- label: data_

→˓int2
...
- label: data_

→˓int3
...

networks:
- label: data_

→˓group1
interfaces:

- data_
→˓int1

- data_
→˓int2

- data_
→˓int3
node_templates:

- ...
networks:

- data_
→˓group1

OS network interface con-
figuration assignment by
group.

Required keys:
networks - List of
references to
network labels
from the top-level
networks:
dictionary.

no

node_templates:
- ...

roles:

roles:
- controllers
- power_servers

Ansible role/group assign-
ment.

Required keys:
roles - List of roles
(Ansible groups) to
assign to client
nodes associated
with this node
template. Names
can be any string.

no

13.8. node_templates: 61

http://docs.ansible.com/ansible/latest/user_module.html
http://docs.ansible.com/ansible/latest/user_module.html
http://docs.ansible.com/ansible/latest/reference_appendices/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module
http://docs.ansible.com/ansible/latest/reference_appendices/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module
http://docs.ansible.com/ansible/latest/reference_appendices/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module
http://docs.ansible.com/ansible/latest/group_module.html
http://docs.ansible.com/ansible/latest/group_module.html
http://docs.ansible.com/ansible/latest/modules/redhat_subscription_module.html
http://docs.ansible.com/ansible/latest/modules/redhat_subscription_module.html
http://docs.ansible.com/ansible/latest/modules/redhat_subscription_module.html

POWER-Up User Guide Documentation, Release 2.0

13.9 software_bootstrap:

software_bootstrap:
- hosts:

executable:
command:

Element Example(s) Description Required

software_bootstrap:
- hosts:

executable:
command:

software_bootstrap:
- hosts: all
command: apt-

→˓get update
- hosts:

→˓openstackservers
executable: /

→˓bin/bash
command: |
set -e
apt update
apt

→˓upgrade -y

Software bootstrap de-
fines commands to be
run on client nodes
after POWER-Up com-
pletes. This is useful
for various additional
configuration activities,
such as bootstrapping ad-
ditional software package
installations.

Required keys:
hosts - Hosts to run
commands on. The
value can be set to
‘all’ to run on all
hosts,
node_template
labels, or
role/group names.
command -
Command to run.

Optional keys:
executable - Path to
shell used to
execute the
command.

no

62 Chapter 13. Cluster Configuration File Specification

CHAPTER 14

Cluster Inventory File Specification

Specification Version: v2.0

TODO: Short description of inventory.yml and how it should be used.

Each section represents a top level dictionary key:

version:
location:
switches:
nodes:

14.1 version:

Element Example(s) Description Required

version: version: v2.0

Inventory file version.
Release
Branch
Supported
Inventory
File Version

release-2.x
version: v2.0

release-1.x
version: 1.0

release-0.9
version: 1.0

yes

63

POWER-Up User Guide Documentation, Release 2.0

14.2 location:

See Config Specification - Location Section.

14.3 switches:

See Config Specification - Switches Section.

14.4 nodes:

nodes:
- label:

hostname:
rack_id:
rack_eia:
ipmi:

switches:
ports:
userid:
password:
ipaddrs:
macs:

pxe:
switches:
ports:
devices:
ipaddrs:
macs:
rename:

data:
switches:
ports:
devices:
macs:
rename:

os:
interfaces:

64 Chapter 14. Cluster Inventory File Specification

POWER-Up User Guide Documentation, Release 2.0

Element Example(s) Description Required

nodes:
label:
...

label: ubuntu-
→˓servers

Type. yes

nodes:
hostname:
...

hostname: server-1

Hostname. yes

nodes:
rack_id:
...

rack_id: rack_1

Rack ID. no

nodes:
rack_eia:
...

rack_eia: U10

Rack EIA. no

nodes:
ipmi:

switches:
ports:
ipaddr:
mac:
userid:
password:

...

nodes:
ipmi:

switches:
- mgmt_1
- mgmt_2
ports:
- 1
- 11
ipaddrs:
- 10.0.0.1
- 10.0.0.2
macs:
-

→˓01:23:45:67:89:AB
-

→˓01:23:45:67:89:AC
userid:

→˓user
password:

→˓passw0rd

IPMI related parameters.

Required keys:
switches -
Management
switches.
ports -
Management ports.
ipaddrs - IPMI
interface ipaddrs.
macs - IPMI
interface MAC
addresses.
userid - IPMI
userid.
password - IPMI
password.

List items are correlated
by index.

yes

nodes:
pxe:

switches:
ports:
devices:
ipaddrs:
macs:
rename:

...

nodes:
pxe:

switches:
- mgmt_1
- mgmt_2
ports:
- 2
- 12
devices:
- eth16
- eth17
ipaddrs:
- 10.0.1.1
- 10.0.1.2
macs:
-

→˓01:23:45:67:89:AD
-

→˓01:23:45:67:89:AE
rename:
- true
- true

PXE related parameters.

Required keys:
switches -
Management
switches.
ports -
Management ports.
devices - Network
devices.
ipaddrs - Interface
ipaddrs.
macs - Interface
MAC addresses.
rename - Interface
rename flags.

List items are correlated
by index.

yes

nodes:
data:

switches:
ports:
devices:
macs:
rename:

...

nodes:
data:

switches:
- data_1
- data_2
ports:
- 1
- 2
devices:
- eth26
- eth27
macs:
-

→˓01:23:45:67:89:AF
-

→˓01:23:45:67:89:BA
rename:
- true
- true

Data related parameters.

Required keys:
switches - Data
switches.
ports - Data ports.
devices - Network
devices.
macs - Interface
MAC addresses.
rename - Interface
rename flags.

List items are correlated
by index.

yes

nodes:
os:
...

Operating system configu-
ration.
See Config Specification -
Node Templates under the
‘os:’ section.

yes

nodes:
interfaces:
...

Interface definitions.

Interfaces assigned to a
node in Config
Specification - Node
Templates under
‘interfaces:’ or
‘networks:’ are included
in this list. Interfaces are
copied from Config
Specification - Interfaces
section and modified in
the following ways:

* address_list and
address_start keys
are replaced with
address and each
value is replaced
with a
single unique IP
address.

* IPADDR_list and
IPADDR_start keys
are replaced with
IPADDR and each
value is replaced
with a
single unique IP
address.

* If ‘rename: false’
is set in Config
Specification -
Node Templates
under the
physical_interfaces:
section, then iface,
DEVICE, and any
interface value
referencing them
will be modified to
match the given
interface name. See
Config
Specification -
interfaces: And
look in the
‘description’
column for ‘Ubuntu
formatted OS
interface
configuration’ or
‘Red Hat formatted
OS interface
configuration’ for
details.

yes

14.4. nodes: 65

POWER-Up User Guide Documentation, Release 2.0

66 Chapter 14. Cluster Inventory File Specification

CHAPTER 15

Multiple Tenant Support

POWER-Up has the ability to segment a physical cluster into multiple isolated groups of nodes, allowing multiple
users / tenants to use the cluster at the same time while maintaining complete isolation between tenants.

The process of sub-dividing a cluster into multiple groups is simple. You create a config.yml file for each group of
nodes and deploy the groups one at a time. Each group must have a unique PXE and IPMI subnet and vlan number.
The mgmt network can be common for all groups. POWER-Up creates a container and isolated networks on the
deployer for each tenant in the cluster. A symbolic link to the inventory.yml file for each group is created in the
power-up directory with the name inventoryn.yml where n is the number of the pxe vlan for the group.

As an example, the figure above shows a basic cluster with four nodes. To configure these into two groups of two
nodes, create a config file for each group. Edit the deployer section of each config file and under the client subsection,
specify a unique container_ipaddr, bridge_ipaddr and vlan for the ipmi and pxe networks for each group of nodes.

For example, the two groups could be configured as below;

Group 1:

deployer:
networks:

mgmt:
- device: enP10p1s0f0
interface_ipaddr: 192.168.16.3
netmask: 255.255.255.0

client:
- device: enP10p1s0f0
type: ipmi
container_ipaddr: 192.168.30.2
bridge_ipaddr: 192.168.30.3
netmask: 255.255.255.0
vlan: 30

- device: enP10p1s0f0
type: pxe
container_ipaddr: 192.168.40.2

(continues on next page)

67

POWER-Up User Guide Documentation, Release 2.0

Fig. 1: POWER-Up Support for multiple tenants

(continued from previous page)

bridge_ipaddr: 192.168.40.3
netmask: 255.255.255.0
vlan: 40

Group 2:

deployer:
networks:

mgmt:
- device: enP10p1s0f0
interface_ipaddr: 192.168.16.3
netmask: 255.255.255.0

client:
- device: enP10p1s0f0
type: ipmi
container_ipaddr: 192.168.31.2
bridge_ipaddr: 192.168.31.3
netmask: 255.255.255.0
vlan: 31

- device: enP10p1s0f0
type: pxe
container_ipaddr: 192.168.41.2
bridge_ipaddr: 192.168.41.3
netmask: 255.255.255.0
vlan: 41

Next, edit the switch ports list in the node_templates section of each config file;

Group 1:

68 Chapter 15. Multiple Tenant Support

POWER-Up User Guide Documentation, Release 2.0

node_templates:
- label: ubuntu1604-node

ipmi:
userid: ADMIN
password: admin

os:
profile: ubuntu-16.04-server-ppc64el
users:

- name: user1
password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.

→˓p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
groups: sudo

install_device: /dev/sdj
physical_interfaces:

ipmi:
- switch: mgmt1
ports:

- 1
- 3

pxe:
- switch: mgmt1
interface: pxe-ifc
rename: true
ports:

- 2
- 4

data:
- switch: data1
interface: static_1
rename: true
ports:

- 5
- 6

Group 2:

node_templates:
- label: ubuntu1604-node

ipmi:
userid: ADMIN
password: admin

os:
profile: ubuntu-16.04-server-ppc64el
users:

- name: user1
password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.

→˓p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
groups: sudo

install_device: /dev/sdj
physical_interfaces:

ipmi:
- switch: mgmt1
ports:

- 5
- 7

pxe:
- switch: mgmt1

(continues on next page)

69

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

interface: pxe-ifc
rename: true
ports:

- 6
- 8

data:
- switch: data1
interface: static_1
rename: true
ports:

- 7
- 9

data:
- switch: data1
interface: static_2
rename: true
ports:

- 8
- 10

For a complete config file for a basic cluster, See Appendix-D

Assuming your two config files are named config-T1.yml and config.T2.yml and residing in the power-up directory,
to deploy the two groups:

pup deploy config-T1.yml

After the first deploy completes:

pup deploy config-T2.yml

Note

POWER-Up does not currently support the execution of two deploys at the same time. When deploying multiple
groups of nodes, the groups must be deployed sequentially.

Note that if you move a node from an already deployed group to a new group, it can take up to one hour for it’s IPMI
IP lease to expire. If the node is moved to a new subnet before the lease expires you will not be able to access the
nodes IPMI system until it renews it’s IP lease in the new subnet. To avoid this, you can manually cycle power to the
node. Alternately, you can use the ipmitool to reset the BMC of the node to be moved:

ipmitool -I lanplus -H 192.168.30.21 -U ADMIN -P admin mc reset cold

then immediately run:

pup config --mgmt-switches new-group-config.yml

70 Chapter 15. Multiple Tenant Support

CHAPTER 16

Developer Guide

POWER-Up development is overseen by a team of IBM engineers.

16.1 Git Repository Model

Development and test is orchestrated within the master branch. Stable release-x.y branches are created off master and
supported with bug fixes. Semantic Versioning is used for release tags and branch names.

16.2 Coding Style

Code should be implemented in accordance with PEP 8 – Style Guide for Python Code.

16.3 Commit Message Rules

• Subject line

– First line of commit message provides a short description of change

– Must not exceed 50 characters

– First word after tag must be capitalized

– Must begin with one of the follwoing subject tags:

feat: New feature
fix: Bug fix
docs: Documentation change
style: Formatting change
refactor: Code change without new feature
test: Tests change

(continues on next page)

71

http://semver.org/
https://www.python.org/dev/peps/pep-0008/

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

chore: Miscellaneous no code change
Revert Revert previous commit

• Body

– Single blank line seperates subject line and message body

– Contains detailed description of change

– Lines must not exceed 72 characters

– Periods must be followed by single space

Your Commit message can be validated within the tox environment (see below for setup of the tox environment):

power-up$ tox -e commit-message-validate

16.4 Unit Tests and Linters

16.4.1 Tox

Tox is used to manage python virtual environments used to run unit tests and various linters.

To run tox first install python dependencies:

power-up$./scripts/install.sh

Install tox:

power-up$ pip install tox

To run all tox test environments:

power-up$ tox

List test environments:

power-up$ tox -l
py36
bashate
flake8
ansible-lint
commit-message-validate
verify-copyright
file-format

Run only ‘flake8’ test environment:

power-up$ tox -e flake8

16.4.2 Unit Test

Unit test scripts reside in the power-up/tests/unit/ directory.

Unit tests can be run through tox:

72 Chapter 16. Developer Guide

POWER-Up User Guide Documentation, Release 2.0

power-up$ tox -e py36

Or called directly through python (be mindful of your python environment!):

power-up$ python -m unittest discover

16.4.3 Linters

Linters are required to run cleanly before a commit is submitted. The following linters are used:

• Bash: bashate

• Python: pycodestyle/flake8/pylint

• Ansible: ansible-lint

Linters can be run through tox:

power-up$ tox -e bashate
power-up$ tox -e flake8
power-up$ tox -e ansible-lint

Or called directly (again, be mindful of your python environment!)

Pylint and pycodestyle validation is not automatically launched when issuing the tox command. They need to be called
out explicitly:

power-up$ tox -e pycodestyle
power-up$ tox -e pylint
power-up$ tox -e pylint-errors

16.4.4 File Format Validation

Ensure that each text file is in unix mode where lines are terminated by a linefeed:

power-up$ tox -e file-format

16.4.5 Copyright Date Validation

If any changed files include a copyright header the year must be current. This rule is enforced within a tox environment:

power-up$ tox -e verify-copyright

16.4. Unit Tests and Linters 73

POWER-Up User Guide Documentation, Release 2.0

74 Chapter 16. Developer Guide

CHAPTER 17

Building the Introspection Kernel and Filesystem

Note: Introspection is not yet supported in POWER-Up 2.0

Introspection enables the clients to boot a Linux mini-kernel and filesystem prior to deployment. This allows POWER-
Up to extract client hardware resource information and provides an environment for users to run configuration scripts
(e.g. RAID volume management).

17.1 Building

1. By default, the introspection kernel is built automatically whenever one of the following commands are executed,
and the introspection option is enabled in the config.yml file

cd power-up/playbooks
ansible_playbook -i hosts lxc-create.yml -K
ansible_playbook -i hosts lxc-introspect.yml -K
ansible_playbook -i hosts introspection_build.yml -K

or

gen deploy #if introspection was specified in the config.yml file

2. Wait for introspection_build.yml playbook to complete. If the rootfs.cpio.gz and vmlinux images already exist,
the playbook will not rebuild them.

3. The final kernel and filesystem will be copied from the deployer container to the host filesystem under ‘power-
up/os-images/introspection’

17.1.1 Buildroot Config Files

Introspection includes a default buildroot and linux kernel config files.

These files are located in introspection/configs directory under power-up.

75

POWER-Up User Guide Documentation, Release 2.0

If there are any additional features or packages that you wish to add to the introspection kernel, they can be added to
either of the configs prior to setup.sh being executed.

17.2 Run Time

Average load and build time on a POWER8 Server(~24 mins)

17.3 Public Keys

To append a public key to the buildroot filesystem

1. Build.sh must have been run prior

2. Execute add_key.sh <key.pub>

3. The final updated filesystem will be placed into output/rootfs.cpio.gz

76 Chapter 17. Building the Introspection Kernel and Filesystem

CHAPTER 18

Appendix - A Using the ‘pup’ Program

The ‘pup’ program is the primary interface to the Cluster POWER-Up software. Help can be accessed by typing:

pup -h
or
pup --help

Help is context sensitive and will give help appropriate for the argument. For example, ‘pup setup -h’ will provide
help on the setup function.

Usage;

pup [command] [<args>] [options] [–help | -h]

Cluster POWER-Up has extensive logging capabilities. Logging can take place to the screen and a log file (power-
up/logs/gen) and the logging level can be set individually for the screen and file. By default, file logging is set to debug
and screen logging is set to info.

To enable detailed logging to the screen, add the -p debug option. For additional log level help, enter -h at the end of
a pup command. (ie pup setup -h)

Auto completion is enabled for the pup program. At any level of command entry, a single tab will complete the current
command if it is distinguishable. Double tabbing will list all available options for that level of command input.

The following top level commands are provided;

• config

• deploy

• post-deploy

• setup

• software

• utils

• validate

77

POWER-Up User Guide Documentation, Release 2.0

18.1 Bare Metal Deployment

The deploy command deploys your cluster;

pup deploy [config-file-name]

For bare metal deploy, POWER-Up goes through the following steps when you enter pup deploy;

• validate the config file

• sets up interfaces and networks on the deployer node

• configures the management switches

• discovers and validates the cluster hardware

• creates a container for hosting the rest of the POWER-Up software

• deploys operating systems to your cluster node

• sets up ssh keys and user accounts on your cluster nodes

• configures networking on your cluster nodes

• configures your data switches

After installing the operating systems, POWER-Up will pause and wait for input before executing the last 3 steps
above. This provides a convenient place to check on the cluster hardware before proceeding. If desired, you can stop
POWER-Up at that point and re-start later by entering ‘pup post-deploy’.

It is sometimes useful when first bringing up the cluster hardware to be able to run the initial steps above individually.
The following commands can be used to individually run / re-run the first four steps above:

pup validate --config-file [config-file-name]
pup setup --networks [config-file-name]
pup config --mgmt-switches [config-file-name]
pup validate --cluster-hardware [config-file-name]

Note that the above steps must initially be run in order. After successfully completing the above steps in order,
they can be re-run individually. When isolating cluster hardware issues, it is useful to be able to re-run pup validate
–cluster-hardware. pup validate –config-file may be run any time as often as needed.

18.2 Software Installation

POWER-Up provides the ability to install software to a cluster of nodes.

To deploy software;

pup software [{–prep, –install}] [software-name]

Software installation is broken into two phases. The ‘prep’ phase copies / downloads packages and binaries and syncs
any specified repositories to the POWER-Up node. The nginx web server is installed and software is moved to the /srv
directory and made available via the web server. The install phase creates linkages on the client nodes to repositories
on the POWER-Up node and then installs and configures the software.

After software is installed in /srv/ or directory associated with the software dependent package. The software can be
archived by using this command:

pup software <software>.py --bundle-to "/path/to/directory/"

78 Chapter 18. Appendix - A Using the ‘pup’ Program

POWER-Up User Guide Documentation, Release 2.0

This will take some time depending on size of directory and will produce a tarfile so it can be stored in a device or
transferred to other operating system:

INFO - /tmp/srv/tmp8cut_euk
INFO - not compressing
INFO - archiving /srv/ to /tmp/srv/tmp8cut_euk
INFO - created: /tmp/srv/tmp8cut_euk, size in bytes: 1075200, total time: 0 seconds

To extract tar file simply use linux command:

tar -xvf /tmp/srv/tmp8cut_euk # to extract the file to the current directory or
→˓directory of choice.

if pup software is installed run command on deployment node:

pup software <software>.py --extract-from /path/to/your/tarfile/tmp8cut_euk

this will extract software to assigned pup software directory as described in the <software>.py file

18.3 Utilities

POWER-Up provides utility functions to be used on deployer node.

To archive a software directory:

pup utils <config-file>.yml --bundle-to "/tmp/srv" --bundle-from "/srv/"

18.3. Utilities 79

POWER-Up User Guide Documentation, Release 2.0

80 Chapter 18. Appendix - A Using the ‘pup’ Program

CHAPTER 19

Appendix - B WMLA Installation for Advanced Users

This abbreviated instruction list is for advanced users already familiar with the WMLA install process.

1. Prepare the Client Nodes by completing the ‘Setup for automated installer steps’ at https://www.ibm.com/
support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html

2. Enable EPEL repositories. (https://fedoraproject.org/wiki/EPEL#Quickstart):

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

3. Enable Red Hat common, optional and extras repositories.

4. Install the PowerUp software:

sudo yum install git

git clone https://github.com/ibm/power-up -b wmla121-1.0.0

cd power-up

./scripts/install.sh

source scripts/setup-env

5. Install Miniconda (Power instructions shown. Accept the license and respond no to the prompt to modify your
.bashrc file.):

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-ppc64le.sh

bash Miniconda3-latest-Linux-ppc64le.sh

6. Activate conda:

. miniconda3/etc/profile.d/conda.sh
conda activate base

7. Extract WMLA. Assuming the WMLA binary is in /home/user/wmla121bin:

81

https://www.ibm.com/support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html
https://www.ibm.com/support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html
https://fedoraproject.org/wiki/EPEL#Quickstart

POWER-Up User Guide Documentation, Release 2.0

cd /home/user/wmla121bin
bash ibm-wmla-1.2.1_ppc64le.bin

8. Deactivate Conda:

conda deactivate

9. Install WMLA:

pup software --prep wmla121
pup software --status wmla121
pup software --init-clients wmla121
pup software --install wmla121

82 Chapter 19. Appendix - B WMLA Installation for Advanced Users

CHAPTER 20

Appendix - D Example system 1 - Basic Flat Cluster

Fig. 1: A basic flat cluster with two node types

A Sample config.yml file for a basic flat cluster

The config file below defines two compute node templates with multiple network interfaces. The deployer node needs
to have access to the internet which shown via one of the dotted line paths in the figure above or alternately via a
wireless or dedicated interface.

83

POWER-Up User Guide Documentation, Release 2.0

Copyright 2018 IBM Corp.
#
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

version: v2.0

globals:
introspection: False
switch_mode_mgmt: active

location:
racks:

- label: rack1

deployer:
networks:

mgmt:
- device: enP10p1s0f0
interface_ipaddr: 192.168.16.3
netmask: 255.255.255.0

client:
- device: enP10p1s0f0
type: ipmi
container_ipaddr: 192.168.30.2
bridge_ipaddr: 192.168.30.3
netmask: 255.255.255.0
vlan: 30

- device: enP10p1s0f0
type: pxe
container_ipaddr: 192.168.40.2
bridge_ipaddr: 192.168.40.3
netmask: 255.255.255.0
vlan: 40

switches:
mgmt:

- label: mgmt1
class: lenovo
userid: admin
password: passw0rd
interfaces:

- type: outband
ipaddr: 192.168.16.20
port: 1

(continues on next page)

84 Chapter 20. Appendix - D Example system 1 - Basic Flat Cluster

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

links:
- target: deployer

ports: 46
Note that there must be a data switch defined in the config file. In this
case the data and mgmt switch are the same physical switch
data:

- label: data1
class: lenovo
userid: admin
password: passw0rd
interfaces:

- type: outband
ipaddr: 192.168.16.25

links:
- target: deployer

ports: 47

interfaces:
- label: pxe-ifc

description: pxe interface
iface: eth0
method: dhcp

- label: static_1
description: static network 1
iface: eth1
method: static
address_list:

- 192.168.1.2
- 192.168.1.3
- 192.168.1.4

netmask: 255.255.255.0
broadcast: 192.168.1.255
gateway: 192.168.1.1

- label: static_2
description: static network 2
iface: eth2
method: static
address_list:

- 192.168.2.2
- 192.168.2.3
- 192.168.2.4

netmask: 255.255.255.0
broadcast: 192.168.2.255
gateway: 192.168.2.1

networks:
- label: static-ifc1
interfaces:

- static_1

node_templates:
- label: node-type1
ipmi:

userid: ADMIN
password: admin

(continues on next page)

85

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

os:
profile: ubuntu-16.04-server-ppc64el
users:

- name: user1
password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.

→˓p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
groups: sudo

install_device: /dev/sdj
physical_interfaces:

ipmi:
- switch: mgmt1
ports:

- 1
pxe:

- switch: mgmt1
interface: pxe-ifc
rename: true
ports:

- 2
data:

- switch: data1
interface: static_1
rename: true
ports:

- 5
- label: node-type2

ipmi:
userid: ADMIN
password: admin

os:
profile: ubuntu-16.04-server-ppc64el
users:

- name: user1
password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.

→˓p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
groups: sudo

install_device: /dev/sdj
physical_interfaces:

ipmi:
- switch: mgmt1
ports:

- 3
- 5

pxe:
- switch: mgmt1

interface: pxe-ifc
rename: true
ports:

- 4
- 6

data:
- switch: data1

interface: static_1
rename: true
ports:

- 6
- 8

(continues on next page)

86 Chapter 20. Appendix - D Example system 1 - Basic Flat Cluster

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

- switch: data1
interface: static_2
rename: true
ports:

- 7
- 9

87

POWER-Up User Guide Documentation, Release 2.0

88 Chapter 20. Appendix - D Example system 1 - Basic Flat Cluster

CHAPTER 21

Appendix - E Example system 2 - Basic Cluster with High Availability
Network

The config file below defines two compute node templates and multiple network templates. The sample cluster can
be configured with the provided config.yml file. The deployer node needs to have access to the internet for accessing
packages.

Various OpenPOWER nodes can be used such as the S821LC. The deployer node can be OpenPOWER or alternately
a laptop which does not need to remain in the cluster. The data switch can be Mellanox SX1700 or SX1410.

Copyright 2018 IBM Corp.
#
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

version: v2.0

globals:
introspection: False
switch_mode_mgmt: active

location:
time_zone: America/Chicago
racks:

(continues on next page)

89

POWER-Up User Guide Documentation, Release 2.0

Fig. 1: High Availability Network using MLAG / vPC

90 Chapter 21. Appendix - E Example system 2 - Basic Cluster with High Availability Network

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

- label: rack1

deployer:
networks:

mgmt:
- device: enP1p10s0f0
interface_ipaddr: 192.168.32.253
prefix: 24

client:
- device: enP1p10s0f0
type: pxe
container_ipaddr: 192.168.10.2
bridge_ipaddr: 192.168.10.3
netmask: 255.255.255.0
vlan: 10

- device: enP1p10s0f0
type: ipmi
container_ipaddr: 192.168.12.2
bridge_ipaddr: 192.168.12.3
prefix: 24
vlan: 12

switches:
mgmt:

- label: mgmt_1
class: lenovo
userid: admin
password: passw0rd
rack_id: rack1
interfaces:

- type: outband
ipaddr: 192.168.32.20
port: mgmt0

links:
- target: deployer

ports:
- 1

- target: data1_1
ports:

- 2
- target: data1_2

ports:
- 3

data:
- label: data_1_1

class: mellanox
userid: admin
password: passw0rd
rack_id: rack1
interfaces:

- type: outband
ipaddr: 192.168.32.25
port: mgmt0

links:
- target: mgmt_1

ports:
(continues on next page)

91

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

- mgmt0
- target: data1_2

ipaddr: 10.0.0.1
prefix: 24
vlan: 4000
ports:

- 35
- 36

- label: data_1_2
class: mellanox
userid: admin
password: passw0rd
rack_id: rack1
interfaces:

- type: outband
ipaddr: 192.168.32.30
port: mgmt0

links:
- target: mgmt_1

ports: mgmt0
- target: data1_1
ipaddr: 10.0.0.2
netmask: 255.255.255.0
vlan: 4000
ports:

- 35
- 36

interfaces:
- label: pxe-ifc

description: pxe interface
iface: eth0
method: dhcp

- label: bond1_interface1
description: primary interface for bond1
iface: eth1
method: manual
bond_master: bond1
bond_primary: eth0

- label: bond1_interface2
description: secondary interface for bond1
iface: eth2
method: manual
bond_master: bond1

- label: bond1
description: bond interface 1
iface: bond1
bond_mode: active-backup
bond_miimon: 100
bond_slaves: none

- label: bond1_vlan10
description: vlan10 interface off bond1
iface: bond1.10

(continues on next page)

92 Chapter 21. Appendix - E Example system 2 - Basic Cluster with High Availability Network

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

method: manual

- label: bond1_br10
description: bridge interface off bond1 vlan10
iface: br10
method: static
address_start: 172.16.10.1
netmask: 255.255.255.0
bridge_ports: bond1.10
bridge_stp: off

- label: bond1_vlan20
description: vlan20 interface off bond1
iface: bond1.20
method: manual

- label: bond1_br20
description: bridge interface off bond1 vlan20
iface: br20
method: static
address_start: 172.16.20.1
netmask: 255.255.255.0
bridge_ports: bond1.20
bridge_stp: off

networks:
- label: bond1_br10
interfaces:

- bond1_interface1
- bond1_interface2
- bond1
- bond1_vlan10
- bond1_br10

- label: bond1_br20
interfaces:

- bond1_interface1
- bond1_interface2
- bond1
- bond1_vlan20
- bond1_br20

- label: bond1_br10_br20
interfaces:

- bond1_interface1
- bond1_interface2
- bond1
- bond1_vlan10
- bond1_br10
- bond1_vlan20
- bond1_br20

node_templates:
- label: controllers
ipmi:

userid: ADMIN
password: admin

(continues on next page)

93

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

os:
profile: ubuntu-16.04-server-ppc64el
users:

- name: user1
password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.

→˓p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
groups: sudo

install_device: /dev/sdj
physical_interfaces:

ipmi:
- switch: mgmt_1
ports:

- 10
- 12

pxe:
- switch: mgmt_1

interface: pxe-ifc
rename: true
ports:

- 11
- 13

data:
- switch: data_1_1

interface: bond1_interface1
rename: true
ports:

- 18
- 19

- switch: data_1_2
interface: bond1_interface2
rename: true
ports:

- 18
- 19

interfaces:

networks:
- bond1_br10_br20

- label: compute
ipmi:

userid: ADMIN
password: admin

os:
profile: ubuntu-16.04-server-ppc64el
users:

- name: user1
password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.

→˓p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
groups: sudo

install_device: /dev/sdj
physical_interfaces:

ipmi:
- switch: mgmt_1
ports:

- 14
- 16

(continues on next page)

94 Chapter 21. Appendix - E Example system 2 - Basic Cluster with High Availability Network

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

pxe:
- switch: mgmt_1

interface: pxe-ifc
rename: true
ports:

- 15
- 17

data:
- switch: data_1_1

interface: bond1_interface1
rename: true
ports:

- 20
- 21

- switch: data_1_2
interface: bond1_interface2
rename: true
ports:

- 20
- 21

interfaces:

networks:
- bond1_br10

- label: storage
ipmi:

userid: ADMIN
password: admin

os:
profile: ubuntu-16.04-server-ppc64el
users:

- name: user1
password: 6Utk.IILMG9.$EepS/sIgD4aA.qYQ3voZL9yI3/5Q4vv.

→˓p2s4sSmfCLAJlLAuaEmXDizDaBmJYGqHpobwpU2l4rJW.uUY4WNyv.
groups: sudo

install_device: /dev/sdj
physical_interfaces:

ipmi:
- switch: mgmt_1
ports:

- 18
- 20

pxe:
- switch: mgmt_1

interface: pxe-ifc
rename: true
ports:

- 19
- 21

data:
- switch: data_1_1

interface: bond1_interface1
rename: true
ports:

- 22
- 23

(continues on next page)

95

POWER-Up User Guide Documentation, Release 2.0

(continued from previous page)

- switch: data_1_2
interface: bond1_interface2
rename: true
ports:

- 22
- 23

interfaces:

networks:
- bond1_br20

96 Chapter 21. Appendix - E Example system 2 - Basic Cluster with High Availability Network

CHAPTER 22

Appendix - F Detailed POWER-Up Flow (needs update)

This section not yet completed for POWER-Up 2.0.

97

POWER-Up User Guide Documentation, Release 2.0

98 Chapter 22. Appendix - F Detailed POWER-Up Flow (needs update)

CHAPTER 23

Appendix - G Configuring Management Access on the Lenovo G8052 and
Mellanox SX1410

For the Lenovo G8052 switch, the following commands can be used to configure management access on interface 1.
Initially the switch should be configured with a serial cable so as to avoid loss of communication with the switch when
configuring management access. Alternately you can configure a second management interface on a different subnet
and vlan.

Enable configuration mode and create vlan:

RS 8052> enable
RS 8052# configure terminal
RS 8052 (config)# vlan 16 (sample vlan #)
RS G8052(config-vlan)# enable
RS G8052(config-vlan)# exit

Enable IP interface mode for the management interface:

RS 8052 (config)# interface ip 1

Assign a static ip address, netmask and gateway address to the management interface. This must match the address
specified in the config.yml file (keyname: ipaddr-mgmt-switch:) and be in a different subnet than your cluster man-
agement subnet. Place this interface in the above created vlan:

RS 8052 (config-ip-if)# ip address 192.168.16.20 (example IP address)
RS 8052 (config-ip-if)# ip netmask 255.255.255.0
RS 8052 (config-ip-if)# vlan 16
RS 8052 (config-ip-if)# enable
RS 8052 (config-ip-if)# exit

Configure the default gateway and enable the gateway:

ip gateway 1 address 192.168.16.1 (example ip address)
ip gateway 1 enable

99

POWER-Up User Guide Documentation, Release 2.0

Note: if you are SSH’d into the switch on interface 1, be careful not to cut off access if changing the ip address. If
needed, additional management interfaces can be set up on interfaces 2, 3 or 4.

For the Mellanox switch, the following commands can be used to configure the MGMT0 management port;

switch (config) # no interface mgmt0 dhcp

switch (config) # interface mgmt0 ip address <IP address> <netmask>

For the Mellanox switch, the following commands can be used to configure an in-band management interface on an
existing vlan ; (example vlan 10)

switch (config) # interface vlan 10

switch (config interface vlan 10) # ip address 10.10.10.10 /24

To check the config;

switch (config) # show interfaces vlan 10

100Chapter 23. Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox
SX1410

CHAPTER 24

Appendix - H Recovering from POWER-Up Issues (needs update)

This section not yet updated for POWER-Up 2.0

101

POWER-Up User Guide Documentation, Release 2.0

102 Chapter 24. Appendix - H Recovering from POWER-Up Issues (needs update)

CHAPTER 25

Appendix - I Using the ‘teardown’ Program

The ‘teardown’ program allows for select ‘tear down’ of the POWER-Up environment on the deployer node and
cluster switches. It is primarily used when redeploying your cluster for test purposes, after taking corrective action
after previous deployment failures or for removing the POWER-Up environment from the deployer node.

Similar to the pup program, teardown has built in help and supports tab completion.

Usage:

teardown <command> [<args>] [options] [-help | -h]

The teardown program can perform the following functions;

• Destroy the container associated with the current config.yml file. $ teardown deployer –container

• Undo the deployer network configuration associated with the current config.yml file $ teardown deployer –net-
works

• Undo the configuration of the data switches associated with the current config.yml file. $ teardown switches
–data

NOTE: teardown actions are driven by the current config.yml file. If you wish to make changes to your cluster
configuration, be sure to teardown the existing cluster configuration before changing your config.yml file.

For a typical re-deploy where the POWER-Up software does not need updating, you should teardown the deployer
container and the data switches configuration.

103

POWER-Up User Guide Documentation, Release 2.0

104 Chapter 25. Appendix - I Using the ‘teardown’ Program

CHAPTER 26

Indices and tables

• genindex

• modindex

• search

105

	Document Preface and Scope
	Release Table
	Introduction
	Prerequisite Hardware Setup
	Installing the POWER-Up Software
	Creating the Config File
	Running the POWER-Up Cluster Deployment Software
	Running Operating System Install
	Running the POWER-Up Software Installation Software
	Creating Software Install Modules
	Running the Watson Machine Learning (WML) Accelerator Software Install Module
	Running the WMLA install module in an air-gapped environment
	Cluster Configuration File Specification
	Cluster Inventory File Specification
	Multiple Tenant Support
	Developer Guide
	Building the Introspection Kernel and Filesystem
	Appendix - A Using the ‘pup’ Program
	Appendix - B WMLA Installation for Advanced Users
	Appendix - D Example system 1 - Basic Flat Cluster
	Appendix - E Example system 2 - Basic Cluster with High Availability Network
	Appendix - F Detailed POWER-Up Flow (needs update)
	Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox SX1410
	Appendix - H Recovering from POWER-Up Issues (needs update)
	Appendix - I Using the ‘teardown’ Program
	Indices and tables

